[1] 王峰,雷霁霖,高淳仁,等. 国内外工厂化循环水养殖研究进展[J]. 中国水产科学,2013, 20(5): 1100-1111.
[2] MARTINS C I , EDING E H, VERDEGEM M C, et al. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability[J]. Aquacultural Engineering, 2010, 43(3): 83-93.
[3] KAMSTRA A, HEUL J W. The effect of denitrification on feed intake and feed conversion of European Anguilla anguilla[J]. Aquaculture and Water, 1998, 26(3): 128-129.
[4] HYRAYAMA K. In?uences of nitrate accumulated in culturing water on Octopus vulgari[J]. Nippon Suisan Gakkaishi, 1966, 32: 105-111.
[5] HAMLIN H J, MOORE B C, EDWARDSD T M, et al. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture[J]. Aquaculture, 2008, 281(V4): 118-125.
[6] 崔玉波, 尹军, 韩相奎, 等. 间歇式潜流人工湿地中COD、NH4-N动态变化特征[J]. 环境工程, 2003, 21(3): 62-64.
[7] 肖蕾, 贺锋, 黄丹萍, 等. 人工湿地反硝化外加碳源研究进展[J]. 水生态学杂志, 2012, 33(1): 139-143.
[8] 周卿伟, 祝惠, 阎百兴, 等. 添加填料的人工湿地反硝化过程研究[J]. 湿地科学, 2017, 15(4): 588-594.
[9] YUE W, YI C, NAN Z , et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2010, 101(19): 7286-7292.
[10] 赵联芳, 朱伟, 高青. 补充植物碳源提高人工湿地脱氮效率[J]. 解放军理工大学学报(自然科学版), 2009, 10(6): 644-649.
[11] 晋凯迪. 植物碳源调控下水平潜流湿地强化脱氮试验研究[D]. 郑州:郑州大学, 2016.
[12] 罗鹏, 刘忠. 木质生物资源的水解[J]. 林产化学与工业, 2006, 26(2): 99-104.
[13] 路鹏, 江滔, 李国学. 木质纤维素乙醇发酵研究中的关键点及解决方案[J]. 农业工程学报, 2006, 22(9): 237-240.
[14] LI M, LIANG Z, CALLIER M D, et al. Nitrogen and organic matter removal and enzyme activities in constructed wetlands operated under different hydraulic operating regimes[J]. Aquaculture, 2018, 496(7): 247-254.
[15] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社,2002.
[16] 杨玉婷, 何小娟, 苏跃龙,等. 外加植物碳源强化人工湿地脱氮的研究进展[J]. 水处理技术, 2015, 41(5): 1-4.
[17] 丁怡, 王玮, 王宇晖, 等. 水平潜流人工湿地的脱氮机理及其影响因素研究[J]. 工业水处理, 2015 ,35(6): 6-9.
[18] SAEED T, SUN G. Enhanced denitrification and organics removal in hybrid wetland columns: Comparative experiments[J]. Bioresource Technology, 2011, 102(2): 967-974.
[19] 丁怡, 宋新山, 严登华. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012, 32(7): 1646-1652.
[20] 晋凯迪, 于鲁冀, 陈涛, 等. 植物碳源调控对人工湿地脱氮效果的影响[J]. 环境工程学报, 2016, 10(10): 5611-5616.
[21] 李斌, 郝瑞霞. 固体纤维素类废物作为反硝化碳源滤料的比选[J]. 环境科学, 2013, 34(4): 1428-1434.
[22] NYBERG U. Full-scale application of nitrogen removal with methanol as carbon source[J]. Water Science & Technology, 1992, 26(5/6): 1077-1086.
[23] 杨波, 杨志恒, 胡文容, 等. 亚硝化细菌处理氨氮废水的研究[J]. 武汉理工大学学报, 2007, 29(3): 63-66.
[24] 陈庆昌, 冯爱坤, 罗建中. 人工湿地脱氮技术研究[J]. 工业安全与环保, 2008, 34(7): 17-19.