[1] 汪德进, 何小勇. 含铬废水处理的研究进展[J]. 安徽化工, 2007, 33(1): 12-15.
[2] 古国榜, 李朴. 无机化学[M]. 4版. 北京: 化学工业出版社, 2015.
[3] RAJAPAKSHA A U, ALAM M S, NING C, et al. Removal of hexavalent chromium in aqueous solution using biochar: Chemical and spectroscopic investigations[J]. Science of the Total Environment, 2018, 625: 1567-1573.
[4] 郭峰. 含铬(Ⅵ)废水无害化处理技术研究进展[J]. 中国资源综合利用, 2017, 35(8): 62-65.
[5] 王谦, 李延, 孙平, 等. 含铬废水处理技术及研究进展[J]. 环境科学与技术, 2013, 36(S2): 150-156.
[6] 范力, 张建强, 程新, 等. 离子交换法及吸附法处理含铬废水的研究进展[J]. 水处理技术, 2009, 35(1): 30-33.
[7] 周栋, 高娜, 高乐. 工业含铬废水处理技术研究进展[J]. 中国冶金, 2017, 27(1): 2-6.
[8] 张昊, 谭欣, 赵林. 废水中重金属离子的光催化还原研究进展[J]. 天津理工大学学报, 2004, 20(3): 28-32.
[9] KE Z, HUANG Q, ZHANG H, et al. Reduction and removal of aqueous Cr(Ⅵ) by glow discharge plasma at the gas-solution interface[J]. Environmental Science & Technology, 2011, 45(18): 7841-7847.
[10] 王瑾瑜, 孙亚兵, 缪虹, 等. 电晕放电等离子体同时去除水中Cr(Ⅵ)和苯酚的实验研究[J]. 环境科学学报, 2012, 32(10): 2415-2421.
[11] 李承献, 邵洪源. 含铬废水净化研究进展[J]. 明胶科学与技术, 2015, 35(2): 55-62.
[12] 朱小梅, 孙冰, 赵娜, 等. 高压脉冲电絮凝处理含六价铬废水[J]. 河北大学学报(自然科学版), 2010, 30(5): 538-542.
[13] 巩建英. 辉光放电等离子体技术处理难降解有机污染物及机理研究[D]. 上海: 上海交通大学, 2008.
[14] 李天鸣, 闫光绪, 郭绍辉. 低温等离子体放电技术应用研究进展[J]. 石化技术, 2007, 14(2): 59-63.
[15] 刘超越. 液相射频放电等离子体降解水中三氯甲烷和腐殖酸的研究[D]. 大连: 大连海事大学, 2017.
[16] JI L, ZOU S, SHEN M, et al. Radio frequency underwater discharge operation and its application to congo red degradation[J]. Plasma Science and Technology, 2012, 14(2): 111-117.
[17] 王蕾. 辉光放电等离子体降解水中有机污染物与还原六价铬的研究[D]. 杭州: 浙江大学, 2008.
[18] CHANDANA L, SUBRAHMANVA C. Non-thermal discharge plasma promoted redox transformation of arsenic (Ⅲ) and chromium (Ⅵ) in an aqueous medium[J]. Chemical Engineering Journal, 2017, 329: 211-219.
[19] ZHANG C, SUN Y, YU Z, et al. Simultaneous removal of Cr(Ⅵ) and acid orange 7 from water solution by dielectric barrier discharge plasma[J]. Chemosphere, 2017, 191: 527-536.
[20] 赵晓彤, 孙冰, 朱小梅, 等. 微波液相放电等离子体发射光谱研究[J]. 光谱学与光谱分析, 2017, 37(12): 3855-3858.
[21] WANG L, JIANG X. Plasma-induced reduction of chromium(Ⅵ) in an aqueous solution[J]. Environmental Science & Technology, 2008, 42(22): 8492-8497.
[22] BUXTON G V, DJOUIDER F. Use of the dichromate solution as a dosimeter for high dose and high dose rate[J]. Radiation Physics & Chemistry, 1996, 48(48): 799-804.
[23] 高青松. 隔膜气-液放电等离子体降解水中有机污染物的研究[D]. 大连: 大连海事大学, 2017.
[24] 邵学俊, 董平安, 魏益海. 无机化学[M]. 武汉: 武汉大学出版社, 2003.
[25] 司学芝, 刘捷, 展海军. 无机化学[M]. 北京: 化学工业出版社, 2009.
[26] 何法信. 谈谈重铬酸钾与过氧化氢的反应[J]. 化学通报, 1989(5): 54-57.
[27] KALECINSSKI J. Radiation reduction of Cr, Mo and W isopolymetalates in aqueous system[J]. Journal of Radioanalytical & Nuclear Chemistry, 1998, 232(1/2): 87-90.
[28] JUANG B, GUO J, WANG Z, et al. A green approach towards simultaneous remediations of chromium(Ⅵ) and arsenic(Ⅲ) in aqueous solution[J]. Chemical Engineering Journal, 2015, 262(22): 1144-1151.
[29] BUXTON G V, GREENSTOCK C L, HELAN P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (?OH/?O-) in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 2009, 17(2): 513-886.
[30] WANG L, WANG J, ZHANG S, et al. Decomposition and debromination of monobromoacetic acid by radio frequency discharge in an aqueous solution[J]. Plasma Chemistry & Plasma Processing, 2017, 37(6): 1-12.
[31] WANG X, JIN X, ZHOU M, et al. Reduction of Cr(Ⅵ) in aqueous solution with DC diaphragm glow discharge[J]. Electrochimica Acta, 2013, 112(12): 692-697.
[32] TESTA J J, GRELA M A, LITTER M I. Heterogeneous photocatalytic reduction of chromium(Ⅵ) over TiO2 particles in the presence of oxalate: Involvement of Cr(Ⅴ) species[J]. Environmental Science & Technology, 2004, 38(5): 1589-1594.