[1] 薛翠真, 申爱琴, 郭寅川, 等. 碱激发和复合激发下建筑垃圾砖粉活性研究[J]. 材料导报, 2016, 30(10): 130-134.
[2] GOMES H I, MAYES W M, ROGERSON M, et al. Alkaline residues and the environment: A review of impacts, management practices and opportunities[J]. Journal of Cleaner Production, 2016, 112(4): 3571-3582.
[3] YANG L, YAN Y, HU Z. Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete[J]. Construction & Building Materials, 2013, 44(7): 600-606.
[4] 王雨利, 刘素霞, 罗树琼, 等. 利用固体废弃物制备蒸压加气混凝土砌块的研究[J]. 河南理工大学学报(自然科学版), 2012, 31(5): 613-616.
[5] 中华人民共和国建筑材料工业部. 蒸压加气混凝土砌块: GB 11968-2006[S]. 北京: 中国标准出版社, 2006.
[6] 应姗姗, 钱晓倩, 詹树林. 利用陶瓷生产尾泥制备高铝质蒸压加气混凝土[J]. 建筑材料学报, 2015, 18(2): 291-295.
[7] 白魁, 曾兴华. 利用钨尾矿渣制备蒸压加气混凝土砌块研究[J]. 江西建材, 2013, 12(5): 26-28.
[8] HUANG X Y, NI W, CUI W H, et al. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag[J]. Construction & Building Materials, 2012, 27(1): 1-5.
[9] 许新兵, 李生彬, 任小娜, 等. 建筑垃圾的处理及资源化利用[J]. 资源节约与环保, 2016, 6(1): 90-91.
[10] 中华人民共和国建筑材料工业部. 蒸压加气混凝土性能实验方法: GB/T 11969-2008[S]. 北京: 中国标准出版社, 2008.
[11] 贾韶辉, 刘恒波, 蒋琨, 等. 利用赤泥研制蒸压加气混凝土[J]. 砖瓦, 2011, 6(7): 44-46.
[12] Ró?YCKA A, PICHóR W. Effect of perlite waste addition on the properties of autoclaved aerated concrete[J]. Construction & Building Materials, 2016, 120: 65-71.
[13] CAI L X, MA B G, LI X G, et al. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness[J]. Construction & Building Materials, 2016, 128: 361-372.
[14] WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction & Building Materials, 2016, 104: 109-115.
[15] 郭幻, 宋存义. 烧结脱硫灰制备蒸压加气混凝土砌块的研究[J]. 环境工程学报, 2011, 5(3): 689-695.
[16] MA B G, CAI L X, LI X G, et al. Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products[J]. Journal of Cleaner Production, 2016, 127: 162-171.
[17] CAO Z , CAO Y D , ZHANG J S , et al. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes[J]. International Journal of Minerals Metallurgy and Materials, 2015, 22(8): 892-900.
[18] KURAMA H, TOPCU? B, KARAKURT C. Properties of the autoclaved aerated concrete produced from coal bottom ash[J]. Journal of Materials Processing Technology, 2009, 209(2): 767-773.
[19] 王爱勤, 杨南如, 钟白茜,等. 粉煤灰水泥的水化动力学[J]. 硅酸盐学报, 1997, 25(2): 123-129.
[20] 施惠生, 夏明, 郭晓潞. 粉煤灰基地聚合物反应机理及各组分作用的研究进展[J]. 硅酸盐学报, 2013, 41(7): 972-980.
[21] DROCHYTKA R, HELANOVá E. Development of microstructure of the fly ash aerated concrete in time[J]. Procedia Engineering, 2015, 108: 624-631.
[22] CONG X Y, LU S, YAO Y, et al. Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete[J]. Materials & Design, 2016, 97: 155-162.