[1] |
WUS Z, WANG D, MA L K, et al. An overall reading of action plan for prevention and control of water pollution[J]. Environmental Protection, 2015, 43(9): 14-18.
|
[2] |
WANG X, WANG Y G, SUN C H,et al. Formation mechanism and assessment method for urban black and odorous water body: A review[J] Chinese Journal of Applied Ecology, 2016, 27(4): 1331-1340.
|
[3] |
QIAO X L, ZHE L, ZHI W L. Immobilization of activated sludge in poly(ethylene glycol) by UV technology and its application in micro-polluted wastewater[J]. Biochemical Engineering Journal, 2010, 50(1): 71-76.
|
[4] |
KUI L Z, MIN P P. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria[J]. Nuclear Science and Techniques, 2002, 13(2): 115-118.
|
[5] |
ROSTRON W M, STUCKEY D C, YOUNG A A. Nitrification of high strength ammonia wastewaters: Comparative study of immobilisation media[J]. Water Research, 2001, 35(5): 1169-1178.
|
[6] |
周珊, 周汇, 单胜道. 竹炭固定化微生物去除水样中氨氮的研究[J]. 林业科学, 2009, 45(6): 133-138.
|
[7] |
叶正芳, 俞红燕, 温丽丽, 等. 固定化微生物处理垃圾渗滤液[J]. 中国科学, 2008, 38(8): 721-727.
|
[8] |
曲洋, 张培玉, 郭沙沙, 等. 复合固定化法固定化微生物技术在污水生物处理中的研究应用[J]. 四川环境, 2009, 28(3): 78-84.
|
[9] |
LI T, REN Y, WEI C H. Preparation of PVA-SA-PHB-AC composite carrier and m-cresol biodegradation by immobilized Lysinibacillus cresolivorans[J]. Environmental Science, 2013, 34(7): 2552-2559.
|
[10] |
BAO M, CHEN Q, GONG Y, et al. Removal efficiency of heavy oil by free and immobilised microorganisms on laboratory-scale[J]. Canadian Journal of Chemical Engineering, 2013, 91(1): 1-8.
|
[11] |
MOHAN D, PITTMAN C U, BRICKA M, al et, Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production [J]. Journal of Colloid and Interface Science, 2007, 310(1): 57-73.
|
[12] |
YUAN C, GUANG Y S, CARYT C, et al. Compositions and sorptive properties of crop residue-derived chars [J]. Environmental Science and Technology, 2004, 38(17): 4649-4655.
|
[13] |
MULLA S I, TALWAR M P, BAGEWADI Z K, et al. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1[J]. Chemosphere, 2013, 90(6): 1920-1924.
|
[14] |
高景峰, 王时杰, 樊晓燕, 等. 同步脱氮除磷好氧颗粒污泥培养过程微生物群落变化[J]. 环境科学, 2017, 38(11): 4696-4705.
|
[15] |
ZHOU S, HU Z Y, YU J Q. Biodegradation of phenol wastewater by pseudomonas sp. immobilized on bamboo-carbon[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(5): 889-894.
|
[16] |
HOUSE C H, BERGMANN B A, STOMP A M, et al. Combining constructed wetlands and aquatic and soil filters for reclamation and reuse of water[J]. Ecological Engineering, 1999, 12(1/2): 27-38.
|
[17] |
崔心红. 水生植物应用[M]. 上海: 上海科学技术出版社, 2012.
|
[18] |
由文辉, 刘淑媛. 水生经济植物净化受污染水体研究[J]. 华东师范大学学报(自然科学版), 2000, 46(1): 99-102.
|
[19] |
何明雄, 胡启春, 罗安靖, 等. 人工湿地植物生物质资源能源化利用潜力评估[J]. 应用与环境生物学报, 2011, 17(4): 527-531.
|
[20] |
GOPAL B, GOEL U. Competition and allelopathy in aquatic plant communities[J]. Botanical Review, 1993, 59(3): 155-210.
|
[21] |
孟庆瑞, 崔心红, 朱义, 等. 载氧化镁水生植物生物炭的特性表征及对水中磷的吸附[J]. 环境科学学报, 2017, 37(8): 2960-2967.
|
[22] |
许晓毅, 尤晓露, 吕晨培, 等. 包埋固定化活性污泥脱氮特性与微生物群落分析[J]. 环境科学, 2017, 38(5): 2052-2058.
|
[23] |
CHEN B L, JOHNSON E J, CHEFETZ B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: The role of polarity and accessibility[J]. Environmental Science and Technology, 2005, 39(16): 6138-6146.
|
[24] |
CHEN X, CHEN G, CHEN L, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884.
|
[25] |
AHMAD M, SANG S L, DOU X, et al. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118(8): 536-544.
|
[26] |
ALWABEL M I, ALOMRAN A, ELNAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131(3): 374-379.
|
[27] |
邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学: 上册[M]. 3版. 北京: 高等教育出版社, 2005: 174-180.
|
[28] |
LI R H, WANG J J, ZHOU B, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute[J]. Bioresource Technology, 2016, 215: 209-214.
|
[29] |
LEE J H, JUNG H W, KANG I K, al et, Cell behavior on polymer surfaces with different functional groups[J]. Biomaterials, 1994, 15(9): 705-711.
|
[30] |
SULIMAN W, HARSH J B, ABU-LAIL N I, et al. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties[J]. Biomass & Bioenergy, 2016, 84: 37-48.
|
[31] |
OMAR S H. Oxygen diffusion through gels employed for immobilization[J]. Applied Microbiology & Biotechnology, 1993, 40(1): 1-6.
|
[32] |
MONBOUQUETTE H G, OLLIS D F. Scanning microfluorimetry of Ca-alginate immobilized zymomonas mobilis[J]. Nature Biotechnology, 1988, 6(9): 1076-1079.
|
[33] |
CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al. Nitrate sorption and desorption in biochars from fast pyrolysis[J]. Microporous and Mesoporous Materials, 2013, 179: 250-257.
|
[34] |
HALE S E, ALLING V, MARTINSEN V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars[J]. Chemosphere, 2013, 91(11): 1612-1619.
|