[1] 环境保护部科技标准司. 炼焦化学工业污染物排放标准: GB 16171-2012 [S]. 北京: 中国环境科学出版社, 2012.
[2] 环境保护部科技标准司. 钢铁烧结、球团工业大气污染物排放标准: GB 28662-2012 [S]. 北京: 中国环境科学出版社, 2012.
[3] HE Y Y, MICHAEL E F, ZHU M H, et al. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts [J]. Applied Catalysis B: Environmental, 2016, 193: 141-150.
[4] 张亚平, 郭婉秋, 王龙飞, 等. V2O5/CeO2催化剂用于低温NH3-SCR的性能研究[J]. 催化学报, 2015, 36(10): 1701-1710.
[5] ZANG S, ZHANG G, QIU W, et al. Resistance to SO2 poisoning of V2O5/TiO2 -PILC catalyst for the selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2016, 37(6): 888-897.
[6] WAN Y, ZHAO W, YU T, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148-149(6): 114-122.
[7] LIU J, LIU J, ZHAO Z H, et al. Synthesis of a chabazite‐supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature [J]. Chinese Journal of Catalysis, 2016, 37(5): 750-759.
[8] ROYER S, DUPREZ D, CAN F, et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality [J]. Chemical Reviews, 2014, 114(20): 10292-10368.
[9] 王瑞, 归柯庭, 梁辉. Ce的掺杂对负载型催化剂LaMnO/赤铁矿脱硝性能的影响[J]. 化工进展, 2016, 35(S2): 192-199.
[10] QI K, XIE J, FANG D, et al. Performance enhancement mechanism of Mn-based catalysts prepared under N2 for NOx removal: Evidence of the poor crystallization and oxidation of MnOx[J]. Chinese Journal of Catalysis, 2017, 38(5): 845-851.
[11] 王明洪, 王亮亮, 刘俊, 等. 过渡金属对选择性催化还原脱硝CeO2@TiO2催化剂低温活性的促进作用[J]. 燃料化学学报, 2017, 45(4): 497-504.
[12] 沈伯雄, 刘亭, 杨婷婷, 等. 低温SCR脱硝催化剂过渡金属氧化物改性及硫中毒失活机制研究[J]. 环境科学, 2009, 30(8): 2204-2209.
[13] JIANG B, YUE L, WU Z. Low-temperature selective catalytic reduction of NO on MnOx /TiO2 prepared by different methods[J]. Journal of Hazardous Materials, 2009, 162(2): 1249-1254.
[14] WANG Z H, LIN F W, JING S D, et al. Ceria substrate-oxide composite as catalyst for highly efficient catalytic oxidation of NO by O2[J]. Fuel, 2016, 166: 352-360.
[15] ZHANG Y P, GUO W Q, Xu H T, et al. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx [J]. Chinese Journal of Catalysis, 2015, 36(10): 1701-1710.
[16] ZHANG J X, ZHANG S L, CAI W, et al. Effect of chromium oxide as active site over TiO2-PILC for selective catalytic oxidation of NO [J]. Journal of Environmental Sciences, 2013, 25(12): 2492-2497.
[17] PAVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO [J]. Catalysis Today, 1998, 46: 233-316.
[18] 李小海, 张舒乐, 贾勇, 等. H2O和SO2对Ce(1)Mn(3)Ti催化剂催化氧化NO性能的影响[J]. 燃料化学学报, 2012, 40(4): 866-871.
[19] LI L D, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters. Ⅱ: Mechanism study by situ FTIR spectra [J]. Catalysis Today, 2010, 158(3/4): 361-369.
[20] BOND G C. Vanadium oxide monolayer catalysts preparation characterization and catalytic activity [J]. Applied Catalysis, 1991, 71(1): 1-31.
[21] BUSCA G, CENTI G, TRIFIRO F, et al. Surface acidity of vanadyl pyrophosphate active phase in n-butane selective oxidation [J]. Journal of Physical Chemistry, 1986, 90(7): 1337-1344.
[22] 姜烨, 高翔, 吴卫红. H2O和SO2对V2O5/TiO2催化剂选择性催化还原烟气脱硝性能的影响[J]. 中国电机工程学报, 2013, 33(20): 28-33.
[23] 段瑞瑞. V4+/V5+比值调变影响因素及其V4+和V5+转化的氧化还原速率与SCR脱硝活性[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[24] FENG X Z, YAO Y, SU Q, et al. Vanadium pyrophosphate oxides: The role of preparation chemistry in determining renewable acrolein production from glycerol dehydration [J]. Applied Catalysis B: Environmental, 2015, 164: 31-39.
[25] 曾炜, 顾龙勤, 徐俊峰, 等. 不同P与V比的Mo/VPO催化剂物相组成及其催化性能[J]. 工业催化, 2014, 22(8): 595-598.
[26] TOPS?E N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy [J]. Science, 1994, 265(5176): 1217-1219.
[27] NOVA I, CIARDELLI C, TRONCONI E, et al. NH3-NO/NO2, chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction[J]. Catalysis Today, 2006, 114(1): 3-12.
[28] JIA Y, DU D Q, BAI J C, et al. Characterization and activity of N doped TiO2 supported VPO catalysts for NO oxidation [J]. Atmospheric Pollution Research, 2015, 6(2): 184-190.
[29] LI L D, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters. Ⅱ: Mechanism study by situ FTIR spectra[J]. Catalysis Today, 2010, 158(3/4): 361-369.
[30] GAN L, GUO F, YU J, et al. Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors [J]. Catalysts, 2016, 6(2): 25-40.
[31] LIN C H, BAI H. Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal: In situ DRIFTS study [J]. Applied Catalysis B: Environmental, 2003, 42(3): 279-287.
[32] CHEN T, GUAN B, LIN H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides [J]. Chinese Journal of Catalysis, 2014, 35(3): 294-301.
[33] CHIRRANJIT S, SNEHA S, ANIRUDDHA M, et al. Synthesis, characterization of VPO catalyst dispersed on mesoporous silica surface and catalytic activity for cyclohexane oxidation reaction[J]. Microporous and Mesoporous Materials, 2016, 223: 121-128.
[34] GUO X Y, CAL B, WILLIAM H, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems [J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 30-40.
[35] CHEN J P, YANG R T. Selective catalytic reduction of NO with NH3 on SO42-/TiO2 superacid catalyst[J]. Journal of Catalysis, 1993, 139(1): 277-288.
[36] LU Q, PANG D, ZHANG C, et al. In situ IR studies of Co and Ce doped Mn/TiO2, catalyst for low-temperature selective catalytic reduction of NO with NH3 [J]. Applied Surface Science, 2015, 357(3): 189-196.
[37] NIE J, WU X, MA Z, et al. Tailored temperature window of MnOx -CeO2, SCR catalyst by addition of acidic metal oxides [J]. Chinese Journal of Catalysis, 2014, 35(8): 1281-1288.
[38] CHEN T, GUAN B, LIN H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides [J]. Chinese Journal of Catalysis, 2014, 35(3): 294-301.