草甘膦的水生生物水质基准及其生态风险评估

刘帅, 王腾, 王孜晔, 缪丰锴, 王方钰, 李正炎. 草甘膦的水生生物水质基准及其生态风险评估[J]. 生态毒理学报, 2023, 18(1): 335-350. doi: 10.7524/AJE.1673-5897.20220113001
引用本文: 刘帅, 王腾, 王孜晔, 缪丰锴, 王方钰, 李正炎. 草甘膦的水生生物水质基准及其生态风险评估[J]. 生态毒理学报, 2023, 18(1): 335-350. doi: 10.7524/AJE.1673-5897.20220113001
Liu Shuai, Wang Teng, Wang Ziye, Miao Fengkai, Wang Fangyu, Li Zhengyan. Water Quality Criteria Derivation and Ecological Risk Assessment for Glyphosate[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 335-350. doi: 10.7524/AJE.1673-5897.20220113001
Citation: Liu Shuai, Wang Teng, Wang Ziye, Miao Fengkai, Wang Fangyu, Li Zhengyan. Water Quality Criteria Derivation and Ecological Risk Assessment for Glyphosate[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 335-350. doi: 10.7524/AJE.1673-5897.20220113001

草甘膦的水生生物水质基准及其生态风险评估

    作者简介: 刘帅(1998—),男,硕士研究生,研究方向为水生态风险评价,E-mail:1455344975@qq.com
    通讯作者: 李正炎, E-mail: zhengyan@ouc.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(U22A20614)

  • 中图分类号: X171.5

Water Quality Criteria Derivation and Ecological Risk Assessment for Glyphosate

    Corresponding author: Li Zhengyan, zhengyan@ouc.edu.cn
  • Fund Project:
  • 摘要: 草甘膦是一种高效且广谱的除草剂,具有高效、低残留、低污染等特点,在我国广泛且大量使用,主要经地表径流和土壤渗透等不同途径进入水环境。当水环境草甘膦浓度过高时,会使水生生物的生理系统紊乱,甚至会导致生物死亡。本文以草甘膦为研究对象,结合国内外淡水水生生物组成特征,筛选中英文文献中生物毒性实验数据,共获取29个急性毒性数据和13个慢性毒性数据,分别涵盖5门16科29种和3门8科13种。应用毒性百分数排序法(TPR)和物种敏感度分布法(SSD)推导草甘膦的水质基准值,以及应用商值法评价国内外各地水体中草甘膦的生态风险。结果显示,草甘膦的基准最大浓度(CMC)、基准连续浓度(CCC)、短期基准值(SWQC)和长期基准值(LWQC)分别为0.12、0.035、0.14和0.007 mg·L-1。风险表征结果显示,我国江苏省南京市太湖地表水中的草甘膦浓度最高,高达52 mg·L-1 ,国内外仅7.69%的水体为急性高风险水体,15.38%的水体为慢性高风险水体。上述研究结果可为草甘膦的水质标准制定和区域管理对策实施提供科学依据。
  • 加载中
  • United States Environmental Protection Agency (US EPA). Guidelines for deriving numerical national water quality criteria for protection of aquatic organisms and their uses [R]. Washington DC: Office of Research and Development, 1985: 1-57
    何艳娇. 太湖优控污染物重金属锌和镉水质基准研究[D]. 合肥: 安徽建筑大学, 2021: 1-12 He Y J. Study on water quality standard of heavy metal zinc and cadmium in Taihu Lake [D]. Hefei: Anhui Jianzhu University, 2021: 1

    -12 (in Chinese)

    刘群. 太湖重金属铅和铬的保护水生生物水质基准研究[D]. 合肥: 安徽建筑大学, 2021: 1-13 Liu Q. Study on water quality criteria for protecting aquatic organisms of lead and chromium in Taihu Lake [D]. Hefei: Anhui Jianzhu University, 2021: 1

    -13 (in Chinese)

    马燕. 中美银的淡水生物水质基准研究[D]. 青岛: 青岛理工大学, 2014: 1-6 Ma Y. Aquatic life ambient freshwater quality criteria for silver ion in China and USA [D]. Qingdao: Qingdao Technology University, 2014: 1

    -6 (in Chinese)

    刘婷婷, 郑欣, 闫振广, 等. 我国水生生物的二甲苯基准阈值探讨及其在风险评估中的初步应用[J]. 生态毒理学报, 2015, 10(1): 130-138

    Liu T T, Zheng X, Yan Z G, et al. Derivation of freshwater aquatic life water quality criteria for xylene and their preliminary application in risk assessment in China [J]. Asian Journal of Ecotoxicology, 2015, 10(1): 130-138 (in Chinese)

    刘俐, 李亚兵, 刘红玲. 太湖保护水生生物2, 4-二氯苯酚基准研究[J]. 环境化学, 2020, 39(7): 1774-1787

    Liu L, Li Y B, Liu H L. Derivation of water quality criteria of 2,4-dichlorophenol for protection of aquatic life in Tai Lake [J]. Environmental Chemistry, 2020, 39(7): 1774-1787 (in Chinese)

    曹晶潇, 陈晓泳, 陆素芬, 等. 广西坡豪湖氨氮水生生物水质基准及生态风险评估[J]. 贵州农业科学, 2019, 47(4): 145-149

    Cao J X, Chen X Y, Lu S F, et al. Water quality criteria and ecological risk assessment of aquatic organisms with ammonia nitrogen in Pohao Lake in Guangxi [J]. Guizhou Agricultural Sciences, 2019, 47(4): 145-149 (in Chinese)

    中华人民共和国环境保护部. 淡水水生生物水质基准制定技术指南: HJ 831—2017[S]. 北京: 中国环境出版社, 2017
    中华人民共和国生态环境部. 淡水水生生物水质基准制定指南(修订征求意见稿): HJ 831—2022 [S]. 北京: 中国环境出版社, 2022
    魏琛, 宋丽婧, 杨卫萍, 等. 贵阳市地表水中草甘膦农药残留研究[J]. 环境科学与技术, 2016, 39(3): 126-130

    Wei C, Song L J, Yang W P, et al. Research on glyphosate pesticide residue in surface water in Guiyang [J]. Environmental Science & Technology, 2016, 39(3): 126-130 (in Chinese)

    Mercurio P, Flores F, Mueller J F, et al. Glyphosate persistence in seawater [J]. Marine Pollution Bulletin, 2014, 85(2): 385-390
    卢信, 赵炳梓, 张佳宝, 等. 除草剂草甘膦的性质及环境行为综述[J]. 土壤通报, 2005, 36(5): 785-790

    Lu X, Zhao B Z, Zhang J B, et al. Property and environmental behavior of herbicide glyphosate [J]. Chinese Journal of Soil Science, 2005, 36(5): 785-790 (in Chinese)

    徐怡, 刘其根, 胡忠军, 等. 10种农药对克氏原螯虾幼虾的急性毒性[J]. 生态毒理学报, 2010, 5(1): 50-56

    Xu Y, Liu Q G, Hu Z J, et al. Acute toxicity of ten pesticides to larval red swamp crayfish Procambarus clarkii [J]. Asian Journal of Ecotoxicology, 2010, 5(1): 50-56 (in Chinese)

    冯承莲, 吴丰昌, 赵晓丽, 等. 水质基准研究与进展[J]. 中国科学: 地球科学, 2012, 42(5): 646-656

    Feng C L, Wu F C, Zhao X L, et al. Research and progress of water quality standards [J]. Scientia Sinica (Terrae), 2012, 42(5): 646-656 (in Chinese)

    Posthuma L, Suter G W, Traas T P. Species sensitivity distributions in ecotoxicology [M]. Boca Raton, CRC: Lewis Publishers, 2002
    孟伟, 吴丰昌, 主编. 中国环境科学研究院编. 水质基准的理论与方法学导论[M]. 北京: 科学出版社, 2010: 36-56
    李会仙, 吴丰昌, 陈艳卿, 等. 我国水质标准与国外水质标准/基准的对比分析[J]. 中国给水排水, 2012, 28(8): 15-18

    Li H X, Wu F C, Chen Y Q, et al. Comparative analysis on Chinese water quality standards and foreign water quality standards/criteria [J]. China Water & Wastewater, 2012, 28(8): 15-18 (in Chinese)

    Wu F C, Meng W, Zhao X L, et al. China embarking on development of its own national water quality criteria system [J]. Environmental Science & Technology, 2010, 44(21): 7992-7993
    Jin X W, Wang Y Y, Giesy J P, et al. Development of aquatic life criteria in China: Viewpoint on the challenge [J]. Environmental Science and Pollution Research International, 2014, 21(1): 61-66
    中国国家标准化管理委员会, 中华人民共和国国家质量监督检验检疫总局. 淡水水生生物水质基准制定技术指南: HJ 831—2017[S]. 北京: 中国国家标准化管理委员会, 中华人民共和国国家质量监督检验检疫总局, 2017
    Stephen C E, Mount D I, Hansen D J, et al. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses [R]. Washington D C: US Environmental Protection Agency, 1985
    Antón F A, Laborda E, de Ariz M. Acute toxicity of the herbicide glyphosate to fish [J]. Chemosphere, 1994, 28(4): 745-753
    Ma J, Feng Y, Xie W, et al. Immune response in common carp (Cyprinus carpio L.) following glyphosate-exposure [J]. Toxin Reviews, 2015, 34(4): 1-6
    Ma J G, Li X Y. Alteration in the cytokine levels and histopathological damage in common carp induced by glyphosate [J]. Chemosphere, 2015, 128: 293-298
    Neškovi N K, Poleksi V, Elezovi I, et al. Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L. [J]. Bulletin of Environmental Contamination and Toxicology, 1996, 56(2): 295-302
    Pereira A G, Jaramillo M L, Remor A P, et al. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain [J]. Chemosphere, 2018, 209: 353-362
    傅建炜, 史梦竹, 李建宇, 等. 草甘膦对草鱼、鲢鱼和鲫鱼的毒性[J]. 生物安全学报, 2013, 22(2): 119-122

    Fu J W, Shi M Z, Li J Y, et al. Toxicity of glyphosate on grass carp (Ctenopharyngodon idellus), chub (Hypophthalmictuthys molitrix) and crucian (Carassius auratus) [J]. Journal of Biosafety, 2013, 22(2): 119-122 (in Chinese)

    Currie Z, Prosser R S, Rodriguez-Gil J L, et al. Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms [J]. Environmental Toxicology and Chemistry, 2015, 34(5): 1178-1184
    Wan M T, Watts R G, Moul D J. Effects of different dilution water types on the acute toxicity to juvenile Pacific salmonids and rainbow trout of glyphosate and its formulated products [J]. Bulletin of Environmental Contamination and Toxicology, 1989, 43(3): 378-385
    Mitchell D G, Chapman P M, Long T J. Acute toxicity of Roundup and Rodeo herbicides to rainbow trout, chinook, and coho salmon [J]. Bulletin of Environmental Contamination and Toxicology, 1987, 39(6): 1028-1035
    Servizi J A, Gordon R W, Martens D W. Acute toxicity of garlon 4 and roundup herbicides to salmon, Daphnia, and trout [J]. Bulletin of Environmental Contamination and Toxicology, 1987, 39(1): 15-22
    Morgan M J, Kiceniuk J W. Response of rainbow trout to a two month exposure to Vision®, a glyphosate herbicide [J]. Bulletin of Environmental Contamination and Toxicology, 1992, 48(5): 772-780
    Relyea R A, Jones D K. The toxicity of roundup original max® to 13 species of larval amphibians [J]. Environmental Toxicology and Chemistry, 2009, 28(9): 2004
    Edginton A N, Sheridan P M, Stephenson G R, et al. Comparative effects of pH and vision herbicide on two life stages of four anuran amphibian species [J]. Environmental Toxicology and Chemistry, 2004, 23(4): 815-822
    Howe C M, Berrill M, Pauli B D, et al. Toxicity of glyphosate-based pesticides to four North American frog species [J]. Environmental Toxicology and Chemistry, 2004, 23(8): 1928-1938
    Uchida M, Takumi S, Tachikawa K, et al. Toxicity evaluation of glyphosate agrochemical components using Japanese medaka (Oryzias latipes) and DNA microarray gene expression analysis [J]. The Journal of Toxicological Sciences, 2012, 37(2): 245-254
    Chandrasekera W U, Weeratunga N P. The lethal impacts of roundup® (glyphosate) on the fingerlings of guppy, Poecilia reticulata Peters, 1859 [J]. Asian Fisheries Science, 2011, 24(4): 367-378
    Abdelghani A A, Tchounwou P B, Anderson A C, et al. Toxicity evaluation of single and chemical mixtures of roundup, Garlon-3A, 2, 4-D, and syndets surfactant to channel catfish (Ictalurus punctatus), bluegill sunfish (Lepomis microchirus), and crawfish (Procambarus spp.) [J]. Environmental Toxicology and Water Quality, 1997, 12(3): 237-243
    Tsui M T K, Chu L M. Comparative toxicity of glyphosate-based herbicides: Aqueous and sediment [J]. Archives of Environmental Contamination and Toxicology, 2004, 46(3): 316-323
    李佳. 绿藻和水溞对草甘膦和氰氟草酯的响应[D]. 重庆: 西南大学, 2018: 27-30 Li J. Response of green algea and Daphnia to glyphosate and cyhalofop-butyl [D]. Chongqing: Southwest University, 2018: 27

    -30 (in Chinese)

    Al-Omar M A, Hassan N A. Simple and rapid method for the detection of early signs of toxicity in Daphnia magna Straus [J]. Bulletin of Environmental Contamination and Toxicology, 2000, 65(5): 553-559
    Mensah P K, Palmer C G, Muller W J. Derivation of South African water quality guidelines for Roundup(®) using species sensitivity distribution [J]. Ecotoxicology and Environmental Safety, 2013, 96: 24-31
    Henry C J, Higgins K F, Buhl K J. Acute toxicity and hazard assessment of Rodeo®, X-77 Spreader®, and Chem-Trol® to aquatic invertebrates [J]. Archives of Environmental Contamination and Toxicology, 1994, 27(3): 392-399
    Folmar L C, Sanders H O, Julin A M. Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates [J]. Archives of Environmental Contamination and Toxicology, 1979, 8(3): 269-278
    史建华, 刘智俊, 陆锦天, 等. 草甘膦对中华绒螯蟹幼蟹的毒性影响[J]. 水产科技情报, 2015, 42(5): 239-242

    Shi J H, Liu Z J, Lu J T, et al. Toxic effects of glyphosate on juvenile Eriocheir sinensis [J]. Fisheries Science & Technology Information, 2015, 42(5): 239-242 (in Chinese)

    Xi Y L, Feng L K. Effects of thiophanate-methyl and glyphosate on asexual and sexual reproduction in the rotifer Brachionus calyciflorus Pallas [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 73(4): 644-651
    Relyea R A. The lethal impacts of Roundup and predatory stress on six species of North American tadpoles [J]. Archives of Environmental Contamination and Toxicology, 2005, 48(3): 351-357
    Weeks Santos S, Gonzalez P, Cormier B, et al. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss [J]. Aquatic Toxicolog, 2019, 216: 105291
    Uren Webster T M, Laing L V, Florance H, et al. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2014, 48(2): 1271-1279
    Williams B K, Semlitsch R D. Larval responses of three midwestern anurans to chronic, low-dose exposures of four herbicides [J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 819-827
    Smith C M, Vera M K M, Bhandari R K. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes) [J]. Aquatic Toxicology, 2019, 210: 215-226
    Cuhra M, Traavik T, Bøhn T. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna [J]. Ecotoxicology, 2013, 22(2): 251-262
    Huang X J, Fong S, Deanovic L, et al. Toxicity of herbicides in highway runoff [J]. Environmental Toxicology and Chemistry, 2005, 24(9): 2336-2340
    Morris A, Murrell E G, Klein T, et al. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting [J]. Ecotoxicology, 2016, 25(5): 863-870
    Kielak E, Sempruch C, Mioduszewska H, et al. Phytotoxicity of Roundup Ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant [J]. Pesticide Biochemistry and Physiology, 2011, 99(3): 237-243
    Sobrero M C, Rimoldi F, Ronco A E. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. [J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 537-543
    郭文景, 张志勇, 符志友, 等. 锑的淡水水质基准及其对我国水质标准的启示[J]. 中国环境科学, 2020, 40(4): 1628-1636

    Guo W J, Zhang Z Y, Fu Z Y, et al. Derivation of aquatic life water quality criteria for antimonyin freshwater and its implication for water quality standard in China [J]. China Environmental Science, 2020, 40(4): 1628-1636 (in Chinese)

    刘征涛. 水环境质量基准方法与应用[M]. 北京: 科学出版社, 2012: 138-145
    Parkhurst B R, Warren W. Aquatic ecological risk assessment: A multi-tiered approach, Project 91-AER-1 [R]. Alexandria(VA): Water Environment Research Foundation, 1996
    European Chemicals Bureau (ECB). Technical guidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No.1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part Ⅱ: Environmental risk sssessment [R]. Ispra, Italy: European Chemicals Bureau, European Commission Joint Research Center, European Communities, 2003
    王静, 刘铮铮, 许行义, 等. 浙江省饮用水源有机毒物污染特征及健康风险研究[J]. 环境污染与防治, 2010, 32(7): 29-33

    Wang J, Liu Z Z, Xu X Y, et al. Study on pollution pattern and health risk of organic toxicants in Zhejiang source water [J]. Environmental Pollution & Control, 2010, 32(7): 29-33 (in Chinese)

    何书海, 曹小聪, 吴海军, 等. 直接进样超高效液相色谱-三重四极杆质谱法快速测定环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利残留[J]. 色谱, 2019, 37(11): 1179-1184

    He S H, Cao X C, Wu H J, et al. Rapid determination of glyphosate, aminomethyl phosphonic acid, glufosinate, and ethephon residues in environmental water by direct injection-ultra performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 37(11): 1179-1184 (in Chinese)

    李祥平, 齐剑英, 陈永亨. 离子色谱法测定环境水体中的卤乙酸和草甘膦[J]. 应用化学, 2009, 26(4): 447-450

    Li X P, Qi J Y, Chen Y H. Determination of dichloroacetic acid, trichloroacetic acid and glyphosate in environmental water by ion chromatography with large volume direct injection [J]. Chinese Journal of Applied Chemistry, 2009, 26(4): 447-450 (in Chinese)

    范瑾煜, 耿金菊, 王晓蓉. 离子色谱法测定太湖水体中甘草磷含量[C]// 第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集. 上海: 上海师范大学, 复旦大学, 上海交通大学, 2011: 22-223
    郭浩, 张松, 宋胜利, 等. 亲水性相互作用色谱-串联质谱联用法检验鱼塘水中的草甘膦[J]. 分析试验室, 2013, 32(6): 93-96

    Guo H, Zhang S, Song S L, et al. Determination of glyphosate residues in fishpond water using hydrophilic interaction chromatography tandem mass spectrometry [J]. Chinese Journal of Analysis Laboratory, 2013, 32(6): 93-96 (in Chinese)

    Peruzzo P J, Porta A A, Ronco A E. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina [J]. Environmental Pollution, 2008, 156(1): 61-66
    李健平, 王晓婧, 王缘, 等. HPLC-MS-MS法和IC法测定水中2,4-D、草甘膦、灭草松含量的对比研究[J]. 中国公共卫生管理, 2021, 37(5): 641-643

    Li J P, Wang X J, Wang Y, et al. Comparison of HPLC-MS-MS and IC in determination of 2,4-D, glyphosate and bentazone in water [J]. Chinese Journal of Public Health Management, 2021, 37(5): 641-643 (in Chinese)

    王敏, 李广益, 高慧, 等. 高效液相色谱-柱后衍生法测定水中草甘膦[J]. 食品科技, 2017, 42(2): 295-297

    Wang M, Li G Y, Gao H, et al. Determination of glyphosate in water by high performance liquid chromatography with post column derivatization [J]. Food Science and Technology, 2017, 42(2): 295-297 (in Chinese)

    安静. 全自动固相萃取-气相色谱质谱法监测地表水中的5种有机磷类农药残留量[J]. 中国测试, 2019, 45(11): 61-65

    An J. Automatic SPE-GC/MS method for determination of 5 organophosphorus pesticides residues in surface water [J]. China Measurement & Test, 2019, 45(11): 61-65 (in Chinese)

    宋洲, 罗火焰, 刘田, 等. 柱前衍生高效液相色谱法测定地下水中草甘膦[J]. 资源环境与工程, 2020, 34(S2): 159-163

    Song Z, Luo H Y, Liu T, et al. Determination of glyphosate in groundwater by high performance liquid chromatography combined with pre-column derivatization [J]. Resources Environment & Engineering, 2020, 34(S2): 159-163 (in Chinese)

    沈路遥, 彭自然, 何文辉, 等. 罗氏沼虾养殖塘草甘膦残留特征及生态风险评估[J]. 上海海洋大学学报, 2021, 30(5): 821-827

    Shen L Y, Peng Z R, He W H, et al. Residual characteristics and ecological risk assessment of glyphosate in Macrobrachium rosenbergii culture ponds [J]. Journal of Shanghai Ocean University, 2021, 30(5): 821-827 (in Chinese)

    Lutri V F, Matteoda E, Blarasin M, et al. Hydrogeological features affecting spatial distribution of glyphosate and AMPA in groundwater and surface water in an agroecosystem. Córdoba, Argentina [J]. Science of the Total Environment, 2020, 711: 134557
    Mauffrey F, Baccara P Y, Gruffaz C, et al. Bacterial community composition and genes for herbicide degradation in a stormwater wetland collecting herbicide runoff [J]. Water, Air, & Soil Pollution, 2017, 228(12): 452
    Tang T, Boënne W, Desmet N, et al. Quantification and characterization of glyphosate use and loss in a residential area [J]. The Science of the Total Environment, 2015, 517: 207-214
    Feng J C, Thompson D G, Reynolds P. Fate of glyphosate in a Canadian forest watershed. 1. Aquatic residues and off-target deposit assessment [J]. Journal of Agricultural and Food Chemistry, 1990, 38: 1110-1118
    Ramwell C T, Kah M, Johnson P D. Contribution of household herbicide usage to glyphosate and its degradate aminomethylphosphonic acid in surface water drains [J]. Pest Management Science, 2014, 70(12): 1823-1830
    Hanke I, Wittmer I, Bischofberger S, et al. Relevance of urban glyphosate use for surface water quality [J]. Chemosphere, 2010, 81(3): 422-429
    Okada E, Allinson M, Barral M P, et al. Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia [J]. Water Research, 2020, 168: 115139
    Montiel-León J M, Munoz G, Vo Duy S, et al. Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers [J]. Environmental Pollution, 2019, 250: 29-39
    Wu F C, Mu Y S, Chang H, et al. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids [J]. Environmental Science & Technology, 2013, 47(1): 446-453
    王莉, 刘静, 柳振铎, 等. 十二烷基苯磺酸钠淡水水质基准初探及生态风险评估[J]. 生态毒理学报, 2021, 16(3): 280-290

    Wang L, Liu J, Liu Z D, et al. Preliminary investigation of freshwater water quality criteria and ecological risk assessment of LAS [J]. Asian Journal of Ecotoxicology, 2021, 16(3): 280-290 (in Chinese)

    郝明辉. 清潩河流域氨氮水生生物基准研究[D]. 郑州: 郑州大学, 2018: 58-75 Hao M H. Preliminary aquatic life criteria development of ammonia in Qingyi River basin [D]. Zhengzhou: Zhengzhou University, 2018: 58

    -75 (in Chinese)

    Australian and New Zealand Environment and Conservation Council (ANZECC), Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ). National water quality management strategy, Australian and New Zealand guidelines for fresh and marine water quality [S]. Canberra: ANZECC and ARMCANZ, 2000
    Caux P, Kent R, Fan G T, et al. Protocols for deriving Canadian water quality guidelines for the protection of agricultural water uses. Winnipeg: Canadian Council of Ministers of the Environment 2008
    European Union (EU). EU’s drinking water standards [S]. Luxembourg: Office for Official Publications of the European Communities, 2004
    World Health Organization (WHO). Guidelines for drinking-water quality [R]. Geneva: World Health Organization, 2011
    黄炜惠, 李文攀, 霍守亮, 等. 美国溶解氧基准标准及其对我国的启示[J]. 环境科学研究, 2021, 34(6): 1338-1346

    Huang W H, Li W P, Huo S L, et al. US dissolved oxygen criterion, standard and its revelation for China [J]. Research of Environmental Sciences, 2021, 34(6): 1338-1346 (in Chinese)

    张远, 林佳宁, 王慧, 等. 中国地表水环境质量标准研究[J]. 环境科学研究, 2020, 33(11): 2523-2528

    Zhang Y, Lin J N, Wang H, et al. Research on environmental quality standard for surface water [J]. Research of Environmental Sciences, 2020, 33(11): 2523-2528 (in Chinese)

  • 加载中
计量
  • 文章访问数:  2119
  • HTML全文浏览数:  2119
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-13

草甘膦的水生生物水质基准及其生态风险评估

    通讯作者: 李正炎, E-mail: zhengyan@ouc.edu.cn
    作者简介: 刘帅(1998—),男,硕士研究生,研究方向为水生态风险评价,E-mail:1455344975@qq.com
  • 1. 中国海洋大学环境科学与工程学院, 青岛 266100;
  • 2. 中国海洋大学海洋环境与生态教育部重点实验室, 青岛 266100
基金项目:

国家自然科学基金资助项目(U22A20614)

摘要: 草甘膦是一种高效且广谱的除草剂,具有高效、低残留、低污染等特点,在我国广泛且大量使用,主要经地表径流和土壤渗透等不同途径进入水环境。当水环境草甘膦浓度过高时,会使水生生物的生理系统紊乱,甚至会导致生物死亡。本文以草甘膦为研究对象,结合国内外淡水水生生物组成特征,筛选中英文文献中生物毒性实验数据,共获取29个急性毒性数据和13个慢性毒性数据,分别涵盖5门16科29种和3门8科13种。应用毒性百分数排序法(TPR)和物种敏感度分布法(SSD)推导草甘膦的水质基准值,以及应用商值法评价国内外各地水体中草甘膦的生态风险。结果显示,草甘膦的基准最大浓度(CMC)、基准连续浓度(CCC)、短期基准值(SWQC)和长期基准值(LWQC)分别为0.12、0.035、0.14和0.007 mg·L-1。风险表征结果显示,我国江苏省南京市太湖地表水中的草甘膦浓度最高,高达52 mg·L-1 ,国内外仅7.69%的水体为急性高风险水体,15.38%的水体为慢性高风险水体。上述研究结果可为草甘膦的水质标准制定和区域管理对策实施提供科学依据。

English Abstract

参考文献 (88)

目录

/

返回文章
返回