-
低碳氮比(C/N)进水条件造成的生化系统反硝化脱氮能力不足是我国污水处理厂运行普遍面临的主要问题之一,选择合适的外加碳源并确定碳源的最佳投加量是污水处理厂实现经济、高效、低碳运行的重要举措。外加碳源投加量会受到实际运行中多种因素的影响,包括污水处理厂进水水质水量的波动性、生化系统中微生物群落结构等,这使得传统碳源投加计算公式计算出的理论值用于指导实际工艺运行存在很大的局限性。碳源投加过量或选择碳源不当,不但会增加系统运行费用,还会使污水处理厂出水COD有超标风险。因此,以更加精准科学的方式确定碳源的种类及其投加量是城市生活污水处理厂实现减污降碳协同增效的重要途径。
城镇污水处理厂碳源投加策略分析
Carbon Source Dosing Strategy of Urban domestic Sewage Treatment Plants
-
摘要: 低C/N进水条件造成的生物处理系统反硝化脱氮能力不足已成为我国污水处理厂运行面临的主要挑战。笔者应用文献计量学对目前碳源投加策略进行了总结,并以东北地区某城镇污水处理厂为考察对象,结合各碳源的实际应用情况介绍了目前常用的几种主流外加碳源的优缺点,分析了甲醇、乙酸钠、葡萄糖、麦可碳4种碳源投加公式计算理论值与实际碳源投加量之间存在差异的原因,旨在为城镇污水处理厂实现经济、高效、低碳运行碳源投加策略提供技术指导。Abstract: The lack of denitrification and nitrogen removal capacity of biological treatment systems caused by low C/N ratio in influent has become a significant challenge for the operation of sewage treatment plants. This paper summarizes the current carbon source dosing strategy using bibliometrics. Taking a municipal sewage treatment plant in Northeast China as an example, combined with the practical application of various carbon sources, the advantages and disadvantages of several mainstream external carbon sources commonly used are introduced. And the reasons for differences between the theoretical values calculated with the carbon source addition formula and the actual carbon source dosages of four carbon sources of methanol, sodium acetate, glucose, and MicroC. All these results aimed to provide technical guidance for the carbon source dosing strategy of urban domestic sewage treatment plants, which realize economical, efficient and low-carbon operation.
-
Key words:
- denitrification /
- urban sewage treatment plant /
- carbon source /
- carbon source dosing
-
表 1 各类碳源及其优缺点
Table 1. Various carbon sources and their advantages and disadvantages
名称 优点 缺点 参考文献 常用外
加碳源甲醇 成本低、可大量获得、污泥产量低 是一种易燃易爆、神经毒性的化学物质,运输安全及成本等问题限制了其广泛应用 [1] 乙酸钠 易被利用,反硝化速率较快,适用于应急项目 运输费用高;产泥量大,污泥处理费用增加;价格较贵,基本不会大规模使用 [18] 糖类 糖类中以葡萄糖为代表作为外加碳源处理效果不错,其产品成本低、运输便捷、且容易被生物降解 易引起细菌的大量繁殖,使污泥膨胀,出水COD值升高,影响出水水质,易产生亚硝态氮积累的现象;需现场配制溶液,投加精准性差,大型污水处理厂无法使用;工业葡萄糖含杂质多而食品葡萄糖价格贵 [19] 复合碳源 反硝化速率高,成本降低 构成成分复杂 [20] 食品工业的
废物产品玉米淀粉加工废水 具有较高的有机浓度、良好的可生化性、毒副作用小、且氮、磷释放小 运输成本高、投加设备要求特殊 [3,21]
[22]甜品、汽水、啤酒废水 乳品、肉类加工残渣 富含甘油的生物燃料副产物 麦可碳 MicroC不易燃,且来自可再生农产品,具有环境优势及经济优势 不经驯化污泥难以利用 [23] 粗甘油 粗甘油作为生物柴油的主要副产物来源丰富价格低廉 含有较多杂质、存在环境风险 [4,24] -
[1] PREFACE. Wastewater Engineering: Treatment and Reuse[M]. New York: McGraw Hill Education, 5th edition, 2014. [2] PAN Y, NI B J, BOND, P L, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Research 2013: 47 (10), 3273–3281. [3] XIE T, ZENG Z, LI L L. Achieving partial denitrification using organic matter in brewery wastewater as carbon source[J]. Bioresource technology, 2022, 349: 126849. doi: 10.1016/j.biortech.2022.126849 [4] SCHROEDER A, SOUZA D H, FERNANDES M, et al. Application of glycerol as carbon source for continuous drinking water denitrification using microorganism from natural biomass[J]. J Environ Manage, 2020, 256: 109964. doi: 10.1016/j.jenvman.2019.109964 [5] ZUBROWSKA-SUDOL M, WALCZAK J, PIECHOTA G. Disintegration of waste sludge as an element bio-circular economy in waste water treatment plant towards carbon recovery for biological nutrient removal[J]. Bioresour Technol, 2022, 360: 127622. doi: 10.1016/j.biortech.2022.127622 [6] 周丹, 周雹. 污水脱氮工艺中外部碳源投加量简易计算方法[J]. 给水排水, 2011, 47(11): 38 − 41. doi: 10.3969/j.issn.1002-8471.2011.11.009 [7] 滕荣国, 庄新民. 城市污水厂减少外碳源投加量的研究[J]. 中国给水排水, 2013, 29(21): 65 − 68. doi: 10.19853/j.zgjsps.1000-4602.2013.21.016 [8] 支丽玲, 郑凯凯, 王燕, 等. 全流程分析AAO工艺碳源投加减量控制研究[J]. 水处理技术, 2021, 47(2): 119 − 121. doi: 10.16796/j.cnki.1000-3770.2021.02.023 [9] 孙月娣. Bardenpho工艺内回流与碳源投加耦合控制动态模拟[J]. 中国给水排水, 2017, 33(23): 66 − 70. doi: 10.19853/j.zgjsps.1000-4602.2017.23.014 [10] 包遵胜, 熊晓励, 刘纪成, 等. 某污水深度处理厂人工精细化调控碳源投加量的探究[J]. 环境工程, 2023, 41(4): 137 − 142. [11] 李晨修. 基于智能算法的污水厂碳源投加系统研究[D]. 武汉: 华中科技大学, 2021. [12] 吕利平, 李航, 庞飞, 等. 交替好氧/缺氧短程硝化反硝化工艺处理低C/N城市污水[J]. 环境工程学报, 2020, 14(6): 1529 − 1536. doi: 10.12030/j.cjee.201908121 [13] 王端浩, 李爱民, 李俊, 等. 硫自养反硝化技术研究进展与展望[J]. 环境保护科学, 2023, 49(2): 38 − 43. [14] 李鹏飞, 蒋奇海, 张达飞, 等. 北京某大型再生水厂反硝化生物滤池运行管控实践[J]. 给水排水, 2021, 57(4): 39 − 44. doi: 10.13789/j.cnki.wwe1964.2021.04.007 [15] 吴宇行, 王晓东, 陈宁, 等. 典型城镇污水处理厂碳源智能投加控制生产性试验[J]. 环境工程, 2022, 40(6): 212 − 218. [16] ANDALIB M, TAHER E, DONOHUE J, et al. Correlation between nitrous oxide (N2O) emission and carbon to nitrogen (COD/N) ratio in denitrification process: a mitigation strategy to decrease greenhouse gas emission and cost of operation[J]. Water Science & Technology, 2018, 77(1-2): 426 − 438. [17] IBRAHIM N E L S. Comparison of MicroC™ methanol and acetate as External carbon sources in removal of nitrate and Perchlorate from wastwater by denitrifying Enrichments[D]. Massachusetts: Environmental Engineering Northeastern University. 2008: 1-66. [18] 吴光学, 时运红, 魏楠, 等. 外加常规碳源污水反硝化脱氮研究进展[J]. 给水排水, 2014, 50(S1): 168 − 172. doi: 10.3969/j.issn.1002-8471.2014.z1.055 [19] 李弘义. 碳源投加量和污泥运行参数对污水脱氮效率的影响研究[J]. 海河水利, 2020(3): 45 − 48. doi: 10.3969/j.issn.1004-7328.2020.03.014 [20] 熊子康, 郑怀, 尚娟芳, 等. 污水反硝化脱氮工艺中外加碳源研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(2): 168 − 181. [21] 曾祥专, 杨佘维, 卢欢亮, 等. 高值化利用废燕麦糖作为污水脱氮碳源的生产性研究[J]. 给水排水, 2018, 54(增2): 155 − 157. doi: 10.13789/j.cnki.wwe1964.2018.0341 [22] CARREY R, RODRÍGUEZ-ESCALES P, SOLER A, et al. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: Coupling isotopic tools with mathematical modeling[J]. Journal of Environmental Management, 2018, 207: 105 − 115. [23] CHERCHI, CARLA, ONNIS-HAYDEN, et al. Investigation of MicrocTM as an alternative carbon source for denitrification[J]. Proceedings of the Water Environment Federation, 2008, 2008(13): 3149 − 3167. doi: 10.2175/193864708788733530 [24] CHONG-HAO B, MIN M, YONG N, et al. Process development for scum to biodiesel conversion[J]. Bioresource Technology, 2015, 185. [25] 给水排水设计手册[M]. 第5册. 北京: 中国建筑工业出版社, 2004. [26] 郑兴灿, 李亚新. 污水除磷脱氮技术[M]. 北京: 中国建筑工业出版社, 1998. [27] ATV-DVWK 专家委员会. 德国 ATV 标准 ATV-DVWK-A131E(单段活性污泥法污水处理厂设计)[M]. 德国: GFA 出版公司, 2000. [28] 黄良波, 奚洋, 黄世浏, 等. 低碳源污水AAO脱氮外加碳源计算方法研究[J]. 给水排水, 2021, 57(S1): 175 − 179. doi: 10.13789/j.cnki.wwe1964.2021.S1.036