郑州市降水对大气污染物浓度的影响分析

王桂红, 邵振平. 郑州市降水对大气污染物浓度的影响分析[J]. 环境保护科学, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046
引用本文: 王桂红, 邵振平. 郑州市降水对大气污染物浓度的影响分析[J]. 环境保护科学, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046
WANG Guihong, SHAO Zhenping. Analysis of the influence of precipitation on air pollutants’ concentration in Zhengzhou[J]. Environmental Protection Science, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046
Citation: WANG Guihong, SHAO Zhenping. Analysis of the influence of precipitation on air pollutants’ concentration in Zhengzhou[J]. Environmental Protection Science, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046

郑州市降水对大气污染物浓度的影响分析

    作者简介: 王桂红(1987—),女,硕士、高级工程师。研究方向:人工影响天气技术。E-mail:409208654@qq.com
  • 基金项目:
    中国气象局河南省农业气象保障与应用技术重点实验室应用技术研究项目(KM201824);河南省科技厅重大科技攻关项目(212102310423)
  • 中图分类号: X513

Analysis of the influence of precipitation on air pollutants’ concentration in Zhengzhou

  • 摘要: 基于2017—2020年郑州市空气质量监测数据和同期地面气象观测资料,采用数理统计方法,分析了郑州市降水对空气质量和大气污染物浓度的影响。结果表明,有降水时的空气质量等级为优和良的频率比无降水时的频率高,且降水量级越大空气质量越好。除SO2外,郑州市其他大气污染物PM2.5、PM10、NO2、O3和CO在降水天气后浓度降低时次占比为42.97%~56.12%,其中PM10浓度降低最明显,CO最不明显。小时降水量越大,污染物浓度降低值越小,PM2.5和PM10在降雨天气后浓度降低时次占比越大,当小时降水量(R)>1 mm时,浓度降低时次占比显著高于升高时次占比,且粒径越大效果越好;SO2没有明显变化规律;NO2和CO变化不大。降水天气前大气污染物浓度越高,降水天气后浓度降低值的范围越大;同时浓度降低时次占比也越大(NO2除外)。在小时降水量较大、大气污染物浓度较高时开展人工增雨作业,可以有效改善空气质量,特别是PM2.5和PM10浓度的降低最为显著。
  • 随着矿区农业、采矿业以及化工生产业的不断发展,污染物不断地排放,导致矿区地区浅层地下水不同程度的污染[1-3]。监测显示,某矿区地下水中超标的污染物有重金属Cr、阴离子SO24、F等。Cr(Ⅵ)在环境中呈流动态,毒性很高,很容易穿透细胞壁,在细胞代谢过程中,可引起DNA氧化和非氧化2种形式的损坏,从而导致突变和染色体断裂,影响DNA的自然复制和转录,并能引起突变,主要导致肝细胞功能、肾脏和肺部的癌变[4-6];长期饮用高氟水,轻者牙齿产生斑釉、关节疼痛,重者会影响骨骼发育,甚至丧失劳动力[7-9]。目前,我国有400余个城市以地下水为供水水源[10],有些城市地下水甚至成为唯一供水水源。地下水关乎人民健康,一旦受到污染,造成的危害将无法估量。因此,寻找合适的污染地下水治理技术显得尤为重要。

    硫酸盐还原菌(SRB)价格低廉,是去除重金属离子非常有效的方法之一。董慧等[11]利用SRB去除矿山废水中污染物,在进水pH为3.0、水温为26~27 ℃、进水Fe2+的质量度低于450 mg·L−1mCOD/m硫酸根离子>2.0的条件下,SO24平均去除率在80%以上,且对水中耗氧有机污染物(以COD计)有较好的去除效果,对重金属平均去除率在99%以上。董艳荣等[12]研究了SRB分离及处理煤矿酸性废水工艺,结果表明,在接种量为10%、接种时间为5 d条件下,对煤矿酸性废水中SO24和Fe2+的去除率分别为74.71%和99.18%。SRB虽然在处理污染水方面具有一定的优势,但SRB需要充足碳源,且易受外界因素干扰,单独作用效果差。而SRB固定化技术是将其高度密集于一个有限的空间内,使其保持一定活性,具有处理污水效果好、利于固液分离、可重复利用、回收方便和抗重金属离子抑制能力强等优点[13-14]。安文博等[15]利用生铁屑固定SRB的实验表明,SRB颗粒能够抵抗pH=4的酸溶液,并在碱、盐溶液中能够保持较好稳定性,对Mn2+的吸附容量符合Freundlich等温吸附方程(R2=0.988 68,1/n=0.489 6),吸附动力学符合Elovich动力学模型(R2=0.996 4)。有机-无机杂化材料是一种介于有机聚合物和无机聚合物之间的一种新型纳米复合材料[16-17],其兼具两者的优点,目前,已有研究将其用于水处理技术中。邱迅[18]研究了一种基于二氧化硅的有机-无机杂化材料,将其用于处理水中低浓度的Cu2+、Cr6+等重金属离子,结果表明,该种杂化材料对Cu2+具有一定的吸附选择性,且在中性条件下吸附效果较好,可将50 mg·L−1以下的K2Cr2O7溶液中的Cr(Ⅵ)几乎完全还原并吸附。

    该矿区地下水污染成分复杂,单一杂化材料无法使出水Cr(Ⅵ)、SO24浓度满足要求,单一SRB无法使F有效去除,目前,很少有研究可同时去除该地区多种污染成分的材料。所以,为克服单一处理方法的局限性,考虑将杂化材料与SRB结合,实现对污染物的有效去除。参考周彩华等[19]利用溶胶-凝胶工艺制备氧化锆溶胶、王国祥[20]利用二氧化钛与丙烯酰胺杂化制备杂化材料的实验方法,本研究选择ZrOCl2与丙烯酰胺单体杂化聚合,得到纳米ZrO2-聚丙烯酰胺杂化材料,利用该杂化材料中聚丙烯酰胺这一中间物质对SRB进行固定化处理,形成纳米ZrO2-SRB颗粒。该颗粒对水中污染物具有还原和吸附双重作用,可以同时去除铬和氟。

    实验所用菌株取自阜新市皮革园区生化池。以乙醇为碳源、按5%接种量接入菌株进行富集培养,直至其适应新碳源环境,并能够大量繁殖;采用叠皿夹层培养法对菌株进行纯化分离,直至得到形态单一菌落,将其继续培养即得到纯化的菌株;对菌株分别进行革兰氏染色、芽孢染色、在1 600倍油镜下镜检观察;将菌株置于2份等量的浅层液体培养基中培养:1份进行摇床振荡好氧培养,1份在液体培养基液面滴加石蜡油置于厌氧培养箱中进行厌氧培养。3 d后分别进行基因测序,并利用透射电镜在放大30 000倍条件下进行镜检观察。

    室温下,称取2 g氧氯化锆,溶于200 mL质量分数为95%的乙醇溶液中,ZrOCl2在乙醇溶液中进行水解和缩聚反应,反应如式(1)和式(2)所示。

    ZrCl+H2OZrOH+HCl (1)
    ZrOH+HOZrOZr+H2O (2)

    在得到无色透明的纳米二氧化锆明胶后,向200 mL溶胶中加入0.6 g丙烯酰胺单体、0.05 g亚硫酸氢钠和过硫酸钾作为引发剂,将混合溶液充分搅拌均匀,在25 ℃下,进行聚合反应30 min,得到纳米ZrO2-聚丙烯酰胺无机-有机杂化材料。

    称取质量分数为2.5%的海藻酸钠于300 mL蒸馏水中,充分溶胀后,加入200 mL纳米ZrO2-聚丙烯酰胺杂化材料混匀溶解,密封并于室温下存放8~12 h,再向混合溶液中加入质量分数为2.5%的制孔剂聚乙二醇以及100 mL经驯化培养后处于对数期生长的菌液(平板计数法得到菌液对数期的菌密度为3×108个·mL−1),充分混合、搅拌均匀后,利用注射器滴入到pH=6的2%CaCl2饱和硼酸溶液中,期间利用搅拌器以100 r·min−1的搅拌速率进行交联。4 h后取出颗粒,用0.9%生理盐水进行冲洗,再吸干表面水分,重复3遍。在小球使用前,再放入富集培养基中激活12 h。

    1)机械强度测试。将固定化细菌颗粒放于100 mL的玻璃注射器中,向玻璃注射器施加一定的压力,观察颗粒的破损情况;同时,用手捏固定好的细菌颗粒,根据整个过程细菌颗粒的变化情况来描述其机械强度,从颗粒的硬度以及弹性对其进行强度分级:当颗粒较软时,认为其强度等级较差;当颗粒具有一定的硬度、弹性较差时,认为其强度等级中等;当颗粒具有一定的硬度且弹性好时,认为其强度等级良好;当颗粒硬度大且易碎时,认为其强度等级为优。

    2)传质性能测试。将固定化的细菌颗粒加入到一定量的滴有墨水的蒸馏水中,2 h后取出,观察颗粒颜色进入颗粒的深度,与未加入墨水的固定化颗粒进行对比,确定其传质性能,传质性能分级如下:当颗粒仅有表面变黑且颜色较浅时,认为其传质能力较差;当距离颗粒中心约1/2处变黑且颜色较深时,认为其传质能力中等;当颗粒中心变黑、颜色较浅时,认为其传质能力良好;当颗粒中心变黑、颜色较深时,认为其传质能力为优。

    3)成球性能测试。根据固定化过程肉眼判断成球状况的规则性,根据颗粒成球的黏连性判断颗粒的成球性能。成球性能分级如下:当难于成球、黏连严重时,认为其成球性能较差;当成球的形状不规则、部分黏连时,认为其成球性能中等;当成球形状规则、部分黏连时,认为其成球性能良好;当成球形状规则、无黏连时,认为其成球性能为优。

    4)细菌活性测试。取一定量的细菌颗粒,置于上述配置的细菌富集培养基中,并向培养基中加入浓度为500 mg·L−1SO24,隔一段时间后,观察培养基的颜色变化情况,测定SO24的浓度变化,根据是否产生臭鸡蛋味的气体情况来判断固定化细菌的活性。细菌活性分级如下:当溶液颜色无明显变化、SO24去除率<20%、产生极少臭鸡蛋气味气体时,认为其活性较差;当溶液颜色较浅、SO24去除率为40%~60%、产生少量臭鸡蛋气味气体时,认为其活性中等;当溶液变为较黑色、SO24去除率60%~80%、产生较多臭鸡蛋气味气体时,认为其活性良好;当溶液变为深黑色、SO24去除率80%~95%、产生大量的臭鸡蛋气味气体时,认为其活性为优。

    设计6组直径为50 mm、高为50 cm、总容积为0.98 L的动态柱,底部0~3 cm填有进水炉渣含水层,含水层以上30 cm填充反应层,反应层以上设有3 cm炉渣过滤层,如图1所示。1#柱反应层采用纳米ZrO2-SRB颗粒,颗粒中包含200 mL杂化材料和100 mL菌液,进水水力负荷为2.935 m3·(m2·d)−1,进水成分近似模拟该地区地下水的成分:5 mg·L−1 F、10 mg·L−1 Cr(Ⅵ)、10 mg·L−1 Cr(Ⅲ)、500 mg·L−1 SO24、pH=4.6;2#柱反应层采用与1#柱相同密度的SRB,进行挂膜处理,且在2#柱中加入与1#柱相同量的杂化材料;3#、4#柱进水水力负荷分别为1.468、4.403 m3·(m2·d)−1,5#柱进水成分中将Cr(Ⅵ)提高为50 mg·L−1,6#柱进水成分中将F提高为10 mg·L−1;各柱中保持纳米ZrO2-SRB颗粒数量以及其他进水条件均与1#柱相同。连续测定出水各个污染物的浓度及pH的提升效果。

    图 1  动态装置系统图
    Figure 1.  Dynamic device system

    利用0.1 mol·L−1 HCl、0.2 mol·L−1乙醇和质量分数为2.5%硫脲作为洗脱液,将吸附污染离子后的纳米ZrO2-SRB颗粒加入50 mL洗脱液,并在35 ℃下180 r·min−1下振荡处理60 min,再放入富集培养基中激活12 h。脱附完成后,再次进行吸附,如此吸附-脱附重复3次,并计算每次再生后颗粒对Cr(Ⅵ)、Cr(Ⅲ)、SO24、F的去除率。

    pH采用玻璃电极法测定;Cr(Ⅵ)采用二苯碳酰二肼分光光度法测定;Cr(Ⅲ)采用高锰酸钾氧化-二苯碳酰二肼分光光度法测定;SO24采用铬酸钡分光光度法测定;F采用离子选择电极法测定。

    1 600倍油镜下镜检SRB的革兰氏染色、经番红复染的芽孢染色、SRB透射电镜放大30 000倍的检测结果如图2所示。由图2(a)可看出,经革兰氏染色后,SRB被染为红色,初步判断该菌株呈阴性;由图2(b)可看出,经番红复染后被染为红色,说明该菌株无芽孢;由图2(c)可明显看出,该菌株呈杆状,且具有鞭毛。

    图 2  SRB的特性分析
    Figure 2.  Characteristics analysis of SRB

    好氧和厌氧条件下培养的菌株经DNA测序后,测序结果相同,说明该菌株生化类型为兼性厌氧型。基因测序以及BLAST基因库比对、序列同源性分析如表1所示,可看出,该兼性厌氧菌与Citrobacter amalonaticus TB10的相似性最高,相似度达99.93%,说明该菌株与Citrobacter amalonaticus TB10属于同一性质的菌株,均为柠檬酸性杆菌。并利用MEGA 6.0软件得到所测菌株序列与其他物质的亲缘关系;得到的进化树结果如图3所示。

    表 1  序列同源性分析
    Table 1.  Sequence homology analysis
    菌属菌株相似度/%
    Citrobacter amalonaticusTB1099.93
    Citrobacter amalonaticusHAMBI 129699.86
    Citrobacter amalonaticusLMG 787399.78
    Uncultured Citrobacter sp. cloneF2AUG.1199.71
    Citrobacter farmeriCIP 10455399.64
    Citrobacter farmeri17.7 KSS99.57
    Uncultured bacterium cloneKSR-CFL399.49
    Citrobacter amalonaticusOFF799.42
    Citrobacter spCF3-C99.35
    Citrobacter sp. enrichment culture cloneTB39-1599.28
     | Show Table
    DownLoad: CSV
    图 3  菌株的系统进化树
    Figure 3.  Phylogenetic trees of strains

    将制得的纳米ZrO2-聚丙烯酰胺杂化材料在60 ℃条件下烘干,采用SEM在放大倍数为5 000倍下观察其表观结构,并进行EDS能谱和FT-IR红外光谱分析,结果如图4所示。可以看出,纳米ZrO2-聚丙烯酰胺杂化材料表面孔隙明显,质地均匀,分散性较好;主要含N—H、C—H、C=O、C—N、Zr—O—Zr特征峰,说明杂化材料中既有有机物吸收峰又有无机物吸收峰,由此可见,ZrO2与聚丙烯酰胺间是通过共价键连接。

    图 4  纳米ZrO2-聚丙烯酰胺杂化材料特性分析
    Figure 4.  Analysis of properties of nano-ZrO2- polyacrylamide hybrid materials

    固定化细菌颗粒如图5所示。通过对其做系列性能分析后,发现其在成球过程中形状规则且无黏连,说明其成球性好;在玻璃注射器中施加一定的压力后不易破损,压力增大,破损程度增大,说明其具有一定的硬度、弹性较好;将其加入到滴有墨水的蒸馏水中,2 h取出后发现其中心颜色变黑,且颜色较深,说明其传质性能良好;将其放于培养基中一段时间后,发现培养基颜色变深,且有黑色沉淀生成,会产生一种臭鸡蛋气味的气体产生,此时测定硫酸根的去除率为69.9%,说明其活性良好。

    图 5  固定化的细菌颗粒
    Figure 5.  Entrapped bacterial particles

    6个动态柱的出水情况如图6~图11所示。对比1#、2#动态柱出水情况,可以看出,在SRB和杂化材料投加量相同条件下,纳米ZrO2-SRB颗粒反应层对Cr(Ⅵ)、Cr(Ⅲ)、SO24、F的去除效果要好于挂膜的SRB,对溶液中Cr(Ⅵ)、Cr(Ⅲ)、SO24的有效去除时间要长于挂膜的SRB反应层,这说明纳米ZrO2-SRB颗粒可以利用杂化材料中的乙醇作碳源。纳米ZrO2-SRB颗粒对溶液中Cr(Ⅵ)、Cr(Ⅲ)、SO24的作用包括SRB和纳米ZrO2的双重作用,而F的去除主要依靠纳米ZrO2的吸附作用。Cr(Ⅵ)、Cr(Ⅲ)、SO24、F的最大去除率分别为99.7%、98.8%、70.4%、92.4%;单独的SRB对Cr(Ⅵ)、Cr(Ⅲ)、SO24的最大去除率分别为99.3%、72.4%、71.2%,对F没有去除效果。且可以看出,2种反应层对pH的提升效果影响较小,这说明溶液中的pH主要靠SRB的作用,纳米ZrO2对溶液pH没有提升作用。

    图 6  1#动态柱的出水情况
    Figure 6.  Outlet water of 1# dynamic column
    图 7  2#动态柱的出水情况
    Figure 7.  Outlet water of 2# dynamic column
    图 8  3#动态柱的出水情况
    Figure 8.  Outlet water of 3# dynamic column
    图 9  4#动态柱的出水情况
    Figure 9.  Outlet water of 4# dynamic column
    图 10  5#动态柱的出水情况
    Figure 10.  Outlet water of 5# dynamic column
    图 11  6#动态柱的出水情况
    Figure 11.  Outlet water of 6# dynamic column

    对比1#、3#、4#动态柱的出水情况,可以看出,不同进水水力负荷均不会影响到纳米ZrO2-SRB颗粒对Cr(Ⅵ)、Cr(Ⅲ)、SO24、F的最大去除率,对Cr(Ⅵ)、Cr(Ⅲ)、SO24、F的最大去除率分别为99.7%、98.7%、71.2%、93.7%,但随着进水负荷的增大,维持污染物最大去除率的时间较短,pH最大提升水平维持的时间也有所缩短。在进水水力负荷为2.935 m3·(m2·d)−1、反应进行1~14 d时,F的去除率可以维持在最大水平,7~23 d期间对Cr(Ⅵ)和SO24的去除率可以维持在最大水平;而当水力负荷为4.403 m3·(m2·d)−1时,对F的去除率仅在4 d前可维持最大,对Cr(Ⅵ)和SO24的去除率仅在4.5~8.5 d时保持最大,可看出,能够保证各个污染物有效去除的时间明显缩短了。这是因为在反应层高度相同时,进水流速越大,对反应层的传质推动力越大,导致污染物与反应层的接触时间缩短,污染物未来得及和反应层充分接触便流出动态柱,但进水流速也不宜太小,太小的进水流速会延长接触时间,在相同的处理时间内处理的水量小,所以最佳进水水力负荷选择2.935 m3·(m2·d)−1较为适宜。

    对比1#、5#、6# 3个动态柱内的出水情况,可以看出,当Cr(Ⅵ)的浓度增加到50 mg·L−1时,纳米ZrO2-SRB颗粒对Cr(Ⅵ)的最大去除率仍然可维持在99.7%,但在初始1~3 d时,由于SRB的活性较低,5#动态柱出水中Cr(Ⅵ)的去除率仅为62.3%,相比于1#动态柱去除率91.8%,明显有所下降。这说明纳米ZrO2对高浓度Cr(Ⅵ)的选择吸附性较低,但是靠SRB对Cr(Ⅵ)的还原作用仍然可使出水浓度维持在较佳水平,且当Cr(Ⅵ)浓度增大后,不会影响到纳米ZrO2对F和Cr(Ⅲ)的吸附效果,但对SO24的去除效果会有一定影响。由此可见,纳米ZrO2对F和Cr(Ⅲ)的吸附选择性优于Cr(Ⅵ)优于SO24;当F浓度增加到10 mg·L−1时,对比1#和6#动态柱内的出水情况,可以看出,6#动态柱中在反应1~3 d时,对F、Cr(Ⅵ)、SO24的去除率较1#动态柱中的去除率有所变化,对F的去除率由93.7%上升为96.7%,对Cr(Ⅵ)的去除率由原来的91.8%下降为87.8%,对SO24的去除率由原来的30.2%降为17.5%,对Cr(Ⅲ)的去除效果基本上没有变化,说明纳米ZrO2对F的吸附性能优于Cr(Ⅲ)、Cr(Ⅵ)和SO24

    纳米ZrO2-SRB颗粒经过0、1、2、3次脱附再生后,对Cr(Ⅵ)、Cr(Ⅲ)、SO24、F的去除结果如图12所示。由图12可看出,经过3次循环再生后,较最初对Cr(Ⅵ)、Cr(Ⅲ)、SO24、F的去除率仅分别降低了1.8%、4.0%、1.5%、4.2%。由此可见,SRB在经过加入碳源乙醇和培养基活化后可以恢复其活性,颗粒可以达到较好的再生效果。这说明0.1 mol·L−1 HCl、0.2 mol·L−1乙醇、质量分数为2.5%硫脲和培养基的活化作用对于纳米ZrO2-SRB颗粒是一种良好的再生剂。

    图 12  纳米ZrO2-SRB颗粒的再生性能
    Figure 12.  Regeneration performance of nano-ZrO2-SRB

    1)微观结构表征。将包埋后得到的纳米ZrO2-SRB颗粒和处理不含Cr(Ⅲ)的污染地下水后得到的颗粒分别在60 ℃条件下烘干,采用SEM在放大倍数为2 000倍下观察材料的表观结构和XRD分析,结果如图13所示。可以看出,处理污染物前,细菌颗粒呈现明显的微球状,孔道通畅,表面较为光滑,主要含有的成分是ZrO2和一种有机物CH4N2O·C2H2O4。吸附处理污染水后的细菌颗粒形状变得不为明显,且表面变得粗糙,出现大量的凸形褶皱;处理污染水后的颗粒成分主要有C、O、Zr、S、H、Cr、F等元素;处理不含Cr(Ⅲ)的污水后,出现了ZrCr2H10、C6Cr2O12、ZrS0.67、ZrO0.67F2、Cr(OH)3新物质,Cr最终以Cr(Ⅵ)和Cr(Ⅲ)形式存在,说明SRB可将溶液中的SO24还原为S2-、将Cr(Ⅵ)还原为Cr(Ⅲ),最终以ZrCr2H10、Cr(OH)3、ZrS0.67的形式被去除,且ZrS0.67是硫化物的最终去向,残留在颗粒中;最终产物中含有Cr(Ⅵ),说明ZrO2-SRB处理污染地下水不但具有还原过程还存在纳米ZrO2的吸附过程,可吸附水中的Cr(Ⅵ)和F,最终分别以C6Cr2O12和ZrO0.67F2形式被去除。

    图 13  纳米ZrO2-SRB颗粒材料表征
    Figure 13.  Characterization of Nano-ZrO2-SRB particles

    2)等温吸附实验。取100 mL含10 mg·L−1 Cr(Ⅵ)、10 mg·L−1 Cr(Ⅲ)、5 mg·L−1 F、500 mg·L−1 SO24的溶液9份,每份分别加入质量为0.83、1.66、2.49、3.32、4.15、4.98、5.81、6.64、7.47 g纳米ZrO2-聚丙烯酰胺杂化材料,调节原始溶液至pH=7,置于温度为25 ℃条件下,振荡反应20 min后取出,经过滤后分别测定溶液中Cr(Ⅵ)、Cr(Ⅲ)、FSO24浓度。

    Langmuir和Freundlich模型的方程式分别如式(3)和式(4)所示。

    CeQe=1bQm+CeQm (3)
    lnQe=lnKf+1nlnCe (4)

    式中:Ce为平衡浓度,mg·L−1bLangmuir吸附常数,L·mg−1Qm为达到饱和时的吸附量,mg·g−1Qe为达到动态平衡时的吸附量,mg·g−1KfFreundlich吸附常数;n为经验常数。

    F、Cr(Ⅵ)、Cr(Ⅲ)、SO244种离子的Langmuir模型和Freundlich模型拟合结果如表2所示。由表2可知,Freundlich模型(R2=0.997 3、0.991 6、0.998 1、0.991 1)相比于Langmuir模型(R2=0.883 9、0.790 0、0.723 2、0.639 6)可以更好地拟合杂化材料对Cr(Ⅵ)、Cr(Ⅲ)、FSO24的吸附过程,这说明吸附不仅仅是均匀的单层吸附,更主要的是多层吸附过程。

    表 2  吸附等温线拟合方程及相关系数
    Table 2.  Adsorption isotherm fitting equation and correlation coefficients
    离子类型LangmuirFreundlich
    拟合方程R2拟合方程R2
    F-0.883 90.997 3
    Cr(Ⅵ)0.790 00.991 6
    Cr(Ⅲ)0.723 20.998 1
    0.639 60.991 1
     | Show Table
    DownLoad: CSV

    1)室内动态柱实验结果表明:纳米ZrO2-SRB颗粒为反应层、进水水力负荷2.935 m3·(m2·d)−1时对污染物的去除效果更好;且ZrO2-SRB颗粒对F的吸附选择性优于Cr(Ⅲ)、Cr(Ⅵ)和SO24

    2)结构表征结果表明:纳米ZrO2-SRB颗粒处理污染物后出现大量凸形褶皱,且颗粒组成中出现S、Cr、F元素。

    3)纳米ZrO2-SRB颗粒处理污染物的机理为:SRB对Cr(Ⅵ)、SO24存在还原作用,杂化材料对Cr(Ⅵ)、Cr(Ⅲ)、F存在吸附作用;且吸附等温线符合Freundlich模型,这说明吸附过程是多层吸附。

    4) 0.1 mol·L−1 HCl、0.2 mol·L−1乙醇、质量分数为2.5%硫脲和培养基的活化共同作用对于纳米ZrO2-SRB颗粒的再生具有良好的效果。

  • 图 1  有无降水时不同空气质量等级出现频率

    Figure 1.  Frequency of different air quality classes with or without precipitation

    图 2  降水时次后大气污染物PM2.5(a)、PM10(b)、SO2(c)、NO2(d)、O3(e)和CO(f)浓度变化

    Figure 2.  Atmospheric pollutant of PM2.5(a)、PM10(b)、SO2(c)、NO2(d)、O3(e)and CO(f) concentration changes after precipitation

    图 3  降水时次后大气污染物 PM2.5(a)、PM10(b)、SO2(c)、NO2(d)、O3(e)和 CO(f)浓度变化值随初始浓度的分布Fig.3 Distribution of atmospheric pollutant of PM2.5(a)、PM10(b)、SO2(c)、NO2(d)、O3(e)和 CO(f) concentration change value after precipitation time with initial concentration

    表 1  不同降水量级下各种空气质量等级出现频率

    Table 1.  Frequency of various air quality classes under different precipitation levels

    降水量级空气质量等级出现频率/%
    轻度污染中度污染重度污染严重污染
    小雨(雪) 12.7 61.9 16.1 5.5 3.4 0.4
    中雨(雪) 33.3 51.1 8.9 4.4 2.2 0
    大雨(雪) 35.0 60.0 5.0 0 0 0
    暴雨(雪) 37.5 62.5 0 0 0 0
    降水量级空气质量等级出现频率/%
    轻度污染中度污染重度污染严重污染
    小雨(雪) 12.7 61.9 16.1 5.5 3.4 0.4
    中雨(雪) 33.3 51.1 8.9 4.4 2.2 0
    大雨(雪) 35.0 60.0 5.0 0 0 0
    暴雨(雪) 37.5 62.5 0 0 0 0
    下载: 导出CSV

    表 2  降水时次后大气污染物浓度变化占比

    Table 2.  Proportion of atmospheric pollutant concentration changes after precipitation

    污染物变化趋势占比/%
    升高时次不变时次降低时次
    PM2.5 38.15 15.42 46.43
    PM10 37.93 5.95 56.12
    SO2 12.50 61.41 26.09
    NO2 42.80 12.07 45.13
    O3 37.66 8.17 54.17
    CO 47.40 9.63 42.97
    污染物变化趋势占比/%
    升高时次不变时次降低时次
    PM2.5 38.15 15.42 46.43
    PM10 37.93 5.95 56.12
    SO2 12.50 61.41 26.09
    NO2 42.80 12.07 45.13
    O3 37.66 8.17 54.17
    CO 47.40 9.63 42.97
    下载: 导出CSV

    表 3  不同降水强度降水时次后大气污染物浓度变化占比

    Table 3.  The proportion of atmospheric pollutant concentration change after different rainfall intensity

    污染物变化趋势占比/%0 mm<R≤1 mm1 mm<R≤5 mmR>5 mm
    PM2.5升高时次42.3628.7921.79
    不变时次14.9017.5819.23
    降低时次42.7453.6358.98
    PM10升高时次40.4631.8730.77
    不变时次5.786.813.85
    降低时次53.7661.3265.38
    SO2升高时次14.837.4717.94
    不变时次60.7065.2767.95
    降低时次25.4727.2614.11
    NO2升高时次43.4240.8843.59
    不变时次11.8613.198.97
    降低时次44.7245.9347.44
    O3升高时次37.3440.4426.92
    不变时次8.976.156.41
    降低时次53.6953.4166.67
    CO升高时次47.7646.8144.87
    不变时次9.818.7911.54
    降低时次42.4344.4043.59
      注:R代表小时降水量。
    污染物变化趋势占比/%0 mm<R≤1 mm1 mm<R≤5 mmR>5 mm
    PM2.5升高时次42.3628.7921.79
    不变时次14.9017.5819.23
    降低时次42.7453.6358.98
    PM10升高时次40.4631.8730.77
    不变时次5.786.813.85
    降低时次53.7661.3265.38
    SO2升高时次14.837.4717.94
    不变时次60.7065.2767.95
    降低时次25.4727.2614.11
    NO2升高时次43.4240.8843.59
    不变时次11.8613.198.97
    降低时次44.7245.9347.44
    O3升高时次37.3440.4426.92
    不变时次8.976.156.41
    降低时次53.6953.4166.67
    CO升高时次47.7646.8144.87
    不变时次9.818.7911.54
    降低时次42.4344.4043.59
      注:R代表小时降水量。
    下载: 导出CSV

    表 4  大气污染物浓度分级

    Table 4.  Concentration classification of air pollutants

    污染物浓度一级二级三级四级五级六级
    PM2.50<c≤3535<c≤7575<c≤115115<c≤150150<c≤250c>250
    PM100<c≤5050<c≤150150<c≤250250<c≤350350<c≤420c>420
    SO20<c≤55<c≤1010<c≤2525<c≤5050<c≤100c>100
    NO20<c≤55<c≤1010<c≤2020<c≤5050<c≤100c>100
    O30<c≤2020<c≤5050<c≤100100<c≤150150<c≤200c>200
    CO0<c≤0.30.3<c≤0.60.6<c≤11<c≤22<c≤5c>5
      注:c代表浓度,除CO的浓度单位为 mg·m-3外,其余大气污染物的浓度单位均为μg·m-3
    污染物浓度一级二级三级四级五级六级
    PM2.50<c≤3535<c≤7575<c≤115115<c≤150150<c≤250c>250
    PM100<c≤5050<c≤150150<c≤250250<c≤350350<c≤420c>420
    SO20<c≤55<c≤1010<c≤2525<c≤5050<c≤100c>100
    NO20<c≤55<c≤1010<c≤2020<c≤5050<c≤100c>100
    O30<c≤2020<c≤5050<c≤100100<c≤150150<c≤200c>200
    CO0<c≤0.30.3<c≤0.60.6<c≤11<c≤22<c≤5c>5
      注:c代表浓度,除CO的浓度单位为 mg·m-3外,其余大气污染物的浓度单位均为μg·m-3
    下载: 导出CSV

    表 5  不同等级污染物降水时次后大气污染物的浓度变化占比

    Table 5.  The proportion of atmospheric pollutant concentration change after rainfall of different pollutant levels %

    污染物变化趋势占比一级二级三级四级五级六级
    PM2.5升高时次占比37.0542.0438.3843.3336.7533.33
    不变时次占比19.9411.1110.511.675.880
    降低时次占比43.0146.8551.1155.0057.3766.67
    PM10升高时次占比43.1333.3833.3327.6200
    不变时次占比7.403.0202.8600
    降低时次占比49.4663.6066.6769.521000
    SO2升高时次占比7.9714.3316.3128.1200
    不变时次占比82.1059.3931.326.2500
    降低时次占比9.9326.2952.3765.631000
    NO2升高时次占比75.0035.2929.0445.6248.2266.67
    不变时次占比25.008.8220.6610.917.440
    降低时次占比055.8850.3043.4744.3433.33
    O3升高时次占比32.9736.0941.437.9130.7725.00
    不变时次占比19.237.44.841.9600
    降低时次占比47.856.5153.7660.1369.2375.00
    CO升高时次占比6.0411.9625.1436.0000
    不变时次占比78.1959.3933.248.0000
    降低时次占比15.1728.6541.6256.001000
    污染物变化趋势占比一级二级三级四级五级六级
    PM2.5升高时次占比37.0542.0438.3843.3336.7533.33
    不变时次占比19.9411.1110.511.675.880
    降低时次占比43.0146.8551.1155.0057.3766.67
    PM10升高时次占比43.1333.3833.3327.6200
    不变时次占比7.403.0202.8600
    降低时次占比49.4663.6066.6769.521000
    SO2升高时次占比7.9714.3316.3128.1200
    不变时次占比82.1059.3931.326.2500
    降低时次占比9.9326.2952.3765.631000
    NO2升高时次占比75.0035.2929.0445.6248.2266.67
    不变时次占比25.008.8220.6610.917.440
    降低时次占比055.8850.3043.4744.3433.33
    O3升高时次占比32.9736.0941.437.9130.7725.00
    不变时次占比19.237.44.841.9600
    降低时次占比47.856.5153.7660.1369.2375.00
    CO升高时次占比6.0411.9625.1436.0000
    不变时次占比78.1959.3933.248.0000
    降低时次占比15.1728.6541.6256.001000
    下载: 导出CSV
  • [1] 陈文花. 城市尺度环境空气质量评价中AQI指数的确定[J]. 海峡科学, 2013(12): 20 − 21. doi: 10.3969/j.issn.1673-8683.2013.12.007
    [2] 蒋燕, 陈波, 鲁绍伟, 等. 北京城市森林PM2.5质量浓度特征及影响因素分析[J]. 生态环境学报, 2016, 25(3): 447 − 457.
    [3] 周兆媛, 张时煌, 高庆先, 等. 京津冀地区气象要素对空气质量的影响及未来变化趋势分析[J]. 资源科学, 2014, 36(1): 191 − 199.
    [4] 李思其, 杜海波, 吴正方, 等. 京津冀鲁豫地区空气质量变化特征及其气象驱动因素研究[J]. 环境污染与防治, 2018, 40(12): 1431 − 1454.
    [5] 王媛林, 王哲, 陈学舜, 等. 珠三角秋季典型气象条件对空气污染过程的影响分析[J]. 环境科学学报, 2017, 37(9): 3229 − 3239.
    [6] 白永清, 祁海霞, 赵天良, 等. 湖北 2015 年冬季 PM2.5重污染过程的气象输送条件及日变化特征分析[J]. 气象学报, 2018, 76(5): 803 − 815.
    [7] 周贺玲, 李雪瑶, 刘玉莲, 等. 河北廊坊降水对 PM2.5 质量浓度的湿清除作用[J]. 环境保护科学, 2020, 46(2): 70 − 75.
    [8] 于彩霞, 邓学良. 降水和风对大气PM2.5、PM10 的清除作用分析[J]. 环境科学学报, 2018, 38(12): 4620 − 4629.
    [9] 张丹梅. 人工增雨对大气颗粒污染物浓度的消减作用研究[J]. 环境科学与管理, 2021, 46(1): 43 − 47.
    [10] 廖代强, 向波, 刘永明. 重庆市主城区气象要素与空气质量相关性研究[J]. 环境影响评价, 2020, 42(1): 75 − 80.
    [11] 栾天, 郭学良, 张天航, 等. 不同降水强度对PM2.5的清除作用及影响因素[J]. 应用气象学报, 2019, 30(3): 279 − 291. doi: 10.11898/1001-7313.20190303
    [12] 白婷, 黄毅梅, 樊奇. 河南一次降水天气过程人工增雨作业条件综合分析[J]. 气象, 2020, 46(12): 1633 − 1640. doi: 10.7519/j.issn.1000-0526.2020.12.010
    [13] 田万顺, 刘艳华. 河南3次降水过程的人工增雨条件分析[J]. 气象与环境科学, 2011, 34(1): 5 − 13.
    [14] 马秀玲. 一次春季人工增雨作业条件分析[J]. 内蒙古气象, 2018(6): 40 − 43. doi: 10.14174/j.cnki.nmqx.2018.06.010
    [15] 李尉卿, 杜光俊, 王梦. 郑州市2012-2014年春节期间大气污染物浓度时空变化特征研究[J]. 气象与环境科学, 2015, 38(4): 12 − 21. doi: 10.16765/j.cnki.1673-7148.2015.04.011
    [16] 王桂红. 郑州市空气质量变化特征及其与气象要素的关系[J]. 河南科学, 2021, 39(9): 1497 − 1503.
    [17] 任艳培, 张洪伟, 谢国红. 郑州市空气质量变化特征研究[J]. 河南科技学院学报(自然科学版), 2021, 49(2): 54 − 61.
    [18] 环境保护部. 环境空气质量指数(AQI)技术规定(试行): HJ633—2012[S]. 北京: 中国环境出版社, 2012.
    [19] 安林昌, 张恒德, 李凯飞. 降雨天气对大气污染物浓度的影响分析[J]. 气象与环境学报, 2018, 34(3): 58 − 70. doi: 10.3969/j.issn.1673-503X.2018.03.007
  • 期刊类型引用(1)

    1. 孙群群,屈婧祎,童曼,袁松虎. 地下水水化学组成对Fe(Ⅱ)氧化过程中锰氧化菌失活的影响. 安全与环境工程. 2021(03): 101-107+205 . 百度学术

    其他类型引用(4)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 80.4 %HTML全文: 80.4 %摘要: 17.5 %摘要: 17.5 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 87.6 %其他: 87.6 %Ashburn: 3.3 %Ashburn: 3.3 %Beijing: 1.1 %Beijing: 1.1 %Fuzhou: 0.4 %Fuzhou: 0.4 %Mountain View: 0.4 %Mountain View: 0.4 %Newark: 0.7 %Newark: 0.7 %Shijiazhuang: 0.7 %Shijiazhuang: 0.7 %XX: 4.4 %XX: 4.4 %北京: 0.7 %北京: 0.7 %广州: 0.4 %广州: 0.4 %深圳: 0.4 %深圳: 0.4 %其他AshburnBeijingFuzhouMountain ViewNewarkShijiazhuangXX北京广州深圳Highcharts.com
图( 3) 表( 5)
计量
  • 文章访问数:  1833
  • HTML全文浏览数:  1833
  • PDF下载数:  19
  • 施引文献:  5
出版历程
  • 收稿日期:  2022-07-27
  • 录用日期:  2022-08-25
  • 刊出日期:  2023-08-20
王桂红, 邵振平. 郑州市降水对大气污染物浓度的影响分析[J]. 环境保护科学, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046
引用本文: 王桂红, 邵振平. 郑州市降水对大气污染物浓度的影响分析[J]. 环境保护科学, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046
WANG Guihong, SHAO Zhenping. Analysis of the influence of precipitation on air pollutants’ concentration in Zhengzhou[J]. Environmental Protection Science, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046
Citation: WANG Guihong, SHAO Zhenping. Analysis of the influence of precipitation on air pollutants’ concentration in Zhengzhou[J]. Environmental Protection Science, 2023, 49(4): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2022070046

郑州市降水对大气污染物浓度的影响分析

    作者简介: 王桂红(1987—),女,硕士、高级工程师。研究方向:人工影响天气技术。E-mail:409208654@qq.com
  • 1. 周口市气象局,周口 466000
  • 2. 中国气象局河南省农业气象保障与应用技术重点实验室,郑州 450003
  • 3. 河南省人工影响天气中心,郑州 450003
基金项目:
中国气象局河南省农业气象保障与应用技术重点实验室应用技术研究项目(KM201824);河南省科技厅重大科技攻关项目(212102310423)

摘要: 基于2017—2020年郑州市空气质量监测数据和同期地面气象观测资料,采用数理统计方法,分析了郑州市降水对空气质量和大气污染物浓度的影响。结果表明,有降水时的空气质量等级为优和良的频率比无降水时的频率高,且降水量级越大空气质量越好。除SO2外,郑州市其他大气污染物PM2.5、PM10、NO2、O3和CO在降水天气后浓度降低时次占比为42.97%~56.12%,其中PM10浓度降低最明显,CO最不明显。小时降水量越大,污染物浓度降低值越小,PM2.5和PM10在降雨天气后浓度降低时次占比越大,当小时降水量(R)>1 mm时,浓度降低时次占比显著高于升高时次占比,且粒径越大效果越好;SO2没有明显变化规律;NO2和CO变化不大。降水天气前大气污染物浓度越高,降水天气后浓度降低值的范围越大;同时浓度降低时次占比也越大(NO2除外)。在小时降水量较大、大气污染物浓度较高时开展人工增雨作业,可以有效改善空气质量,特别是PM2.5和PM10浓度的降低最为显著。

English Abstract

  • 随着经济社会的迅速发展,工业化、交通运输化和城镇化等对能源的消耗显著增加,城市空气受到了不同程度的污染,大气中的气体污染物(如氮氧化物、硫化物和臭氧等)、固体颗粒物对人类的身体健康和日常生活产生了严重的影响[1-2]。近年来,中国特别是京津冀、长三角和珠三角等重点区域[3-5]的大气环境问题受到了广泛关注。研究表明,在污染源相对稳定的情况下,降水、温度、湿度和风速等气象要素对污染物的稀释、扩散、输送和转化等过程的影响占据了主要地位[6-8]。发生降雨天气时,云内雨滴吸附和云下雨水冲刷作用对大气污染物浓度的影响最为直接,尤其是云下雨水冲刷作用可以有效降低大气污染物的浓度[9-10]。降水天气对空气质量的改善程度与降水量级的大小、降水前大气污染状况也有一定的关系[11]。人工增雨作业是一种人为干预大气降水的科技手段,它通过飞机、高炮和火箭等工具将催化剂携带到可能下雨或正在下雨的目标云中,从而影响局部大气的云物理过程,达到增加降雨量的目的,为农业抗旱、大气污染防治和改善生态环境提供了有力支撑。近年来,它逐渐成为城市大气污染防治的有效手段。作业条件、作业时机和作业部位的选取直接影响着最终的增雨效果[12-14],因此,分析降水与大气污染物浓度变化的关系,可为采用人工增雨手段治理大气污染问题时作业时机的选择提供科学依据。

    郑州市是河南省的省会,位于河南省中部偏北(112°42′~114°14′E,34°16′~34°58′N),下辖 6区5市1县,总面积7 446 km2,总地势为西南高、东北低。属北温带大陆性季风气候,四季分明,多年平均气温15.6 ºC,多年平均降雨量542.15 mm。地处京广线和陇海线交汇处,被人们称为“火车拉来的城市”,是国家重要的综合交通枢纽,同时也是国务院批复确定的中国中部地区重要的中心城市,经济比较发达、人口比较密集,空气质量重度和严重污染现象时有发生。李尉卿等[15]从时空上对郑州市春节期间的大气污染物浓度变化特征进行研究,发现PM2.5和PM10浓度受各种气象因素的直接影响。王桂红[16]和任艳培等[17]对郑州市空气质量变化规律及其与气象要素之间关系进行了研究,指出郑州市空气质量指数与降水量在全年均表现为明显的负相关关系。但是,目前很少有人研究郑州市降水对空气质量的影响规律,故探讨降水以及不同等级降水是如何影响大气中各种污染物浓度的变化就显得非常有意义。本文深入分析郑州市降水与空气质量、大气污染物浓度的关系,可以为人工增雨改善空气质量时作业时机的选择提供理论参考,同时可以指导降水条件下的空气污染等级预报。

    • 空气质量指数(air quality index,AQI)日数据和可吸入颗粒物(PM10)、 细颗粒物(PM2.5)、二氧化硫(SO2)、二氧化氮(NO2)、臭氧(O3)和一氧化碳(CO)6种污染物小时数据来源于中国环境监测总站(http://www.cnemc.cn/),时间范围为2017—2020年。降水日数据和小时数据分别来源于中国气象科学数据共享服务网(http://data.cma.cn)和郑州市地面气象观测站,时间范围为2017—2020年。

      根据《环境空气质量指数(AQI)技术规定(试行):HJ633—2012》[18],AQI是一种定量描述空气质量实际情况的无量纲指数,数值越大,表示空气污染越严重,对人体健康的影响也越大。文献[18]根据AQI大小将我国城市空气质量划分为 6个等级:AQI为0~50,空气质量状况属于优;AQI为51~100,空气质量状况属于良;AQI为101~150,空气质量状况属于轻度污染;AQI为151~200,空气质量状况属于中度污染;AQI为201~300,空气质量状况属于重度污染;AQI>300,空气质量状况属于严重污染。

      气象学上,把降雨和降雪都称作降水。一般按24小时降水量(即日降水量)把降水分为4个主要等级。小雨(雪)、 中雨(雪)、大雨(雪)和暴雨(雪)对应的日降水量标准分别为0.1~9.9 mm(0.1~2.4 mm)、10.0~24.9 mm(2.5~4.9 mm)、 25.0~49.9 mm(5.0~9.9 mm)和>50 mm(>10 mm)。

    • 郑州市2017—2020年逐日AQI值,除去缺测值,共1 377 d,其中降水日数为309 d,无降水日数1 068 d。有无降水时不同空气质量等级出现频率,见图1

      图1可知,有降水时,各种空气质量等级出现的日数占有降水日数的百分比:优17.81%、良59.86%、轻度污染13.92%、中度污染4.85%、重度污染3.24%和严重污染0.32%;无降水时,各种空气质量等级出现的日数占无降水日数的百分比:优1.77%、良48.51%、轻度污染34.08%、中度污染9.08%、重度污染5.62%和严重污染0.94%。有降水时空气质量为优和良的日数出现频率远远高于无降水时,而有降水时空气质量为轻度污染、中度污染、重度污染和严重污染的频率均小于无降水时。由此可知,降水对郑州市大气污染状况改善十分有利。

      为了研究降水量对空气质量的影响,对不同等级的空气质量日数在不同降水量级时出现的频率进行了计算,见表1。在有降水的309 d中,小雨(雪)有236 d,中雨(雪)有45 d,大雨(雪)有20 d,暴雨(雪)有8 d。小雨(雪)时,6个等级的空气质量日数均有出现,但优和良占一半以上,总占比为74.6 %。中雨(雪)时未出现严重污染天气,且质量为优和良的日数出现频率高达84.4 %。大雨(雪)时空气质量只有优、良和轻度污染。暴雨(雪)时空气质量全为优和良。整体上看来,污染等级天气出现的频率随着降水量级的增大而减小,说明降水量级越大,空气质量越好。

    • 为了更好地研究降水对各种污染物浓度的影响,对降水时次后各种污染物浓度变化情况进行了分析,见表2

      降水时次后,郑州市PM10和O3的浓度降低最为显著,降低时次占比超过一半,其中PM10 浓度降低时次占比高达56.12%。降水天气后,PM2.5、NO2和CO这3种污染物浓度降低时次较高,所占比例范围为42.97%~46.43%。SO2 浓度降低时次占比只有26.09%,主要是由于浓度不变时次较高造成的,不变时次高达61.41%。除SO2外,大气污染物在降水天气后浓度不变时次占比为5.95%~15.42%。

    • 降水强度是指单位时间或某一时段的降水量,能够直接反映降水剧烈程度的大小。由2.1降水对空气质量的整体影响研究表明,空气质量状况和降水量级大小有很大的关系。降水强度不同,对大气污染物的清除和冲刷作用不同,较大的风速对大气污染物也有着比较明显的扩散输送作用,且强降水和大风速常常相伴存在。

      对降水时次后,6种大气污染物浓度的变化规律进行分析,见图2

      小时降水量越大,在降水天气后大气污染物的浓度变化值越小,这是因为强降水之前往往已经有持续的弱降水,大气中的污染物经过一段时间的雨水冲刷,已经降到比较低的水平,想要进一步下降就相对比较困难。对不同强度降水对污染物浓度的影响进一步分析表明,见表3

      在降水天气后,PM2.5和PM10浓度降低时次占比随着小时降水量的增加而增加,同时浓度升高时次占比减小。在降水天气后,SO2浓度降低时次占比随降水量等级的增加而稍微增大,例外的是,当小时降水量(R)>5 mm时反而减小显著。NO2和CO降水天气后浓度升高时次、不变时次和降低时次随降水量等级变化不大。O3R≤5 mm时,降水天气后浓度降低时次随着小时降水量等级升高略有减少,而当R>5 mm时浓度降低时次增加比较明显。在各个不同等级雨强中,颗粒物PM2.5、PM10 超过40%的降水时次后浓度降低,尤其是当R>1 mm 时,占比达到一半以上,且PM10比PM2.5降低更为明显。可见在6种大气污染物中,较强降水对颗粒物的清除作用最明显,这种现象随粒径增大而更加明显。在各个降水量级中,降水天气后PM2.5、PM10、NO2、O3和CO 浓度不变时次占比均<20%;而SO2比较特殊,各个降水量级中,降水天气后浓度不变时次占比都>60%,相对较大。

    • 降水天气后降水对各种污染物浓度变化的影响会随着大气污染物初始浓度的不同呈现出一定的规律性。根据污染物浓度的大小,将6种大气污染物划分为6个等级[19],见表4,分析了降水天气后不同等级的大气污染物浓度变化情况。

      研究表明,降水天气前大气污染物PM2.5、PM10、SO2、NO2、O3和CO的初始浓度越高,降雨天气后浓度降低值的范围越大,而增加值的范围越小,见图3

      同时浓度降低时次占比也越大(NO2除外),见表5

      降水天气前大气污染物浓度越高,PM10在降水天气后浓度升高时次占比越少,而PM2.5和O3浓度升高时次占比无明显变化规律,这可能是由于降水天气后这两种污染物浓度不变时次占比无明显变化规律的缘故。降水天气后,不同初始污染物等级中,NO2浓度升高、不变、降低时次占比无显著变化规律。降水天气后SO2和CO浓度升高时次和降低时次占比均随着降雨天气前大气污染物浓度的升高而增加,主要是由于降水天气后浓度不变时次占比降低的缘故。SO2在浓度较低的第一级中,降水天气后浓度不变时次占比较大,高达82.10%,这种现象有可能是因为SO2 浓度值较低,而观测浓度不够精确,从而对SO2浓度的变化反应不太敏感。

    • (1)有降水时空气质量等级为优和良的频率比无降水时的频率高,而无降水时其他污染等级的空气质量频率均大于有降水时的,可见降水有利于优良等级的空气质量出现,且降水量级越大空气质量越好。

      (2)除SO2外,郑州市其他5种大气污染物在降雨天气后浓度降低时次占比为42.97%~56.12%,且降雨天气后PM10 浓度降低时次占比最大,CO浓度降低时次占比最小。SO2浓度不变时次占比最高。

      (3)小时降水量越大,在降水时次后大气污染物浓度的变化量越小,其中颗粒物PM2.5和PM10浓度降低时次占比越大,浓度升高时次占比越小,当小时降水量(R)>1 mm时,浓度降低时次占比显著高于升高时次占比,说明雨量较大时降水可以明显降低颗粒物的浓度,且粒径越大效果越好;SO2由于不变时次占比较高,没有明显变化规律。在各个等级降水中,污染物NO2和CO在降雨天气后浓度升高时次、不变时次和降低时次占比变化不大。所以,在小时降雨量较大时开展人工增雨作业可以有效降低颗粒物PM2.5和PM10的浓度。

      (4)降水天气前大气污染物PM2.5、PM10、SO2、NO2、O3和CO的初始浓度越高,降雨天气后浓度降低值的范围越大,而增加值的范围越小;同时浓度降低时次占比也越大(NO2除外)。可见,在大气污染物浓度较高时开展人工增雨作业,对于改善空气质量效果比较明显。

    参考文献 (19)

返回顶部

目录

/

返回文章
返回