Processing math: 100%

城市垃圾分类处理的经济效益与空间优化效益

王永超, 林天润, 刘畅. 城市垃圾分类处理的经济效益与空间优化效益[J]. 环境保护科学, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026
引用本文: 王永超, 林天润, 刘畅. 城市垃圾分类处理的经济效益与空间优化效益[J]. 环境保护科学, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026
WANG Yongchao, LIN Tianrun, LIU Chang. Economic and space optimization benefits of municipal waste classification and disposal[J]. Environmental Protection Science, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026
Citation: WANG Yongchao, LIN Tianrun, LIU Chang. Economic and space optimization benefits of municipal waste classification and disposal[J]. Environmental Protection Science, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026

城市垃圾分类处理的经济效益与空间优化效益

    作者简介: 王永超(1986—),男,博士、副教授。研究方向:土地利用管理,城市与区域发展。E-mail:wangyc@lnu.edu.cn
  • 基金项目:
    国家自然科学基金青年项目(41601154);辽宁省教育厅社科类青年科技人才“育苗”项目(LQN202019);辽宁水源保护区生态环境保护和民生安全协同创新中心研究成果
  • 中图分类号: X799.3

Economic and space optimization benefits of municipal waste classification and disposal

  • 摘要: 我国快速城市化的过程中,城市人口迅速集聚,垃圾产量急剧上升,解决“垃圾围城”的现实问题成为大部分城市环境治理中的重点,化解垃圾分类处理难题成为环保研究的热点。自2017年生活垃圾分类政策推行以来,我国垃圾治理从减量化阶段迈向资源化阶段。在政策实施过程中,老城区逐渐暴露出垃圾收集设施不能满足居民需求,垃圾中转设施污染严重等问题。基于这一现实问题,以城区面积较大、城市更新较慢的沈阳市中心城区为例,核算沈阳市垃圾分类治理后产生的各种效益。利用空间网络分析和选址分析,对沈阳市中心城区垃圾处理站进行优化,使站点建设数量大大降低,服务覆盖范围大幅提升。最后,从源头分类、产业发展和空间优化3方面提出对策。
  • 亚硝化反应是短程脱氮、自养型脱氮的重要氮转化过程之一。自养型脱氮工艺较传统工艺具有显著优势,可节约曝气能耗25%和碳源消耗100%[1-2]。近年来以厌氧氨氧化工艺为核心的自养型脱氮工艺在低氨氮废水处理方面得到初步研究。实现稳定的亚硝化反应是限制自养型脱氮工艺在低氨氮废水处理中应用的重要因素之一。亚硝化反应首先氨氮通过氨氧化细菌(ammonia oxidizing bacteria, AOB)在好氧条件氧化为亚硝酸盐氮,为实现亚硝酸盐累积,需要抑制亚硝酸盐氧化细菌(nitrite oxidizing bacteria, NOB)将亚硝酸盐氮进一步氧化为硝酸盐氮。

    在低氨氮废水处理方面,尤其城镇生活污水,较难实现亚硝酸盐积累。由于较低的氨氮浓度难以形成游离氨或游离亚硝酸等NOB抑制因子,低DO条件抑制NOB效果存在不稳定现象,低DO同时抑制AOB反应速率[3]。WANG等[4]采用DO为0.5 mg·L−1并控制SRT为8 d促进亚硝酸盐累积。JARDIN等[5]采用间歇曝气调控,由于AOB在缺氧-好氧交替环境可快速恢复活性,而NOB活性恢复较慢,进而有利于亚硝化反应。

    羟胺(NH2OH)和肼(N2H4)分别为氨氧化反应与厌氧氨氧化反应的中间产物[6]。投加NH2OH和N2H4有利于NOB的抑制和亚硝酸盐的累积[7-8]。但由于其影响效果不一,缺乏NH2OH和N2H4促进亚硝化的对比研究,且影响机制尚不清晰。因此,本研究首先开展了NH2OH和N2H4对硝化反应影响的平行实验,对比分析了NH2OH和N2H4对氨氧化与亚硝酸盐氧化反应的影响;在此基础上选择处理效果较好的NH2OH开展污泥驯化实验,明确了低氨氮废水亚硝化的快速启动方法及其潜在微生物学机制,以期为低氨氮废水亚硝化的快速启动提供技术支持。

    1) NH2OH、N2H4对比实验。为考察NH2OH、N2H4对亚硝化的影响,分别采用3个处理,包括空白对照(CK)、NH2OH和N2H4,开展平行实验。采用有效容积为1.5 L的烧杯,通过加热板温度控制30 ℃。采用空气压缩机、气体流量计和曝气头分别对3个处理组进行曝气并气体流量控制。为促进亚硝酸盐积累,控制DO在0.5~1.0 mg·L−1。CK组、NH2OH组和N2H4组污泥浓度分别为0.92、1.02和0.96 g·L−1。NH2OH以NH2OH·HCl的形式投加,N2H4以N2H4·H2SO4的形式投加。考虑到2种物质在水溶液中易氧化的特性,实验开始时直接称取19.86 mg NH2OH·HCl和18.57 mg N2H4·H2SO4,分别溶于少量去离子水后,再进行投加。控制体系内部NH2OH和N2H4的初始浓度为2 mg·L−1

    2)亚硝化快速启动实验。通过对比实验,确定NH2OH投加促进亚硝化的影响效果。本阶段采用序批式运行方式,每周期开始时投加NH2OH。圆柱形反应器有效容积25 L,顶部安装搅拌器,底部配置微孔曝气盘,采用空气压缩机、气体流量计控制曝气量。污泥驯化的单个周期为5 h,包括进水5 min、曝气4 h,沉淀50 min、排水5 min,每个周期交换体积为15 L,即交换比为60%。实验过程中NH2OH以NH2OH·HCl的形式投加,称量NH2OH·HCl的质量为248.3 mg,溶于少量去离子水后再进行投加,NH2OH初始浓度为2 mg·L−1,每周期投加1次NH2OH。

    进水均采用模拟废水,NH+4-N采用(NH4)2SO4配置,矿物元素(7.2 mg·L−1 KH2PO4、0.03 mg·L−1 CaCl2、0.07 mg·L−1 MgSO4·7H2O)、微量元素的投加参考文献[9]的投加量。批次实验与亚硝化启动阶段接种污泥采用北京某城市污水处理厂CASS段活性污泥,由于进水水质差异尤其有机物浓度对菌群结构产生较大影响,在开展亚硝化驯化实验前,以低氨氮模拟废水,在连续流反应器中维持DO在 1.0~1.2 mg·L−1条件运行43 d,该过程发生全程硝化反应。在此基础上开展NH2OH驯化实验,进而用于揭示NH2OH投加对亚硝化反应的促进及对菌群结构的影响。

    在NH2OH投加促进亚硝化快速启动实验前与驯化第9天各取污泥混合液5 mL,在10 000 r·min−1离心10 min,弃上清液,使用试剂盒Fast DNA Spin Kit for Soil(MP, Biomedicals, USA) 提取DNA。

    采用Illumina Miseq平台(Illumina, USA)测序分析,测序数据经优化后,样品经均一化后均含有32 107条序列。有效序列采用Ribosomal Database Project (RDP)进行物种分类。

    采用纳氏试剂比色法测定NH+4-N;采用N-(1-萘基)-乙二胺光度法测定NO2-N;采用紫外分光光度法测定NO3-N;采用重量法测定SS和VSS;采用WTW型便携式pH测定仪测定pH和ORP。

    制图制作主要通过OriginPro 9.0(OriginLab, USA)完成,采用OriginPro 9.0(OriginLab, USA)对Monod方程进行曲线拟合。

    亚硝酸盐氮积累率(nitrate accumulation rate, NAR)按式(1)计算。

    η=C(NO2Neff)C(NO2Neff)+C(NO3Neff) (1)

    式中:η为亚硝酸盐积累率,%;C(NO2-Neff)和C(NO3-Neff)分别为出水亚硝酸盐氮和硝酸盐氮浓度,mg·L−1

    氨氮与亚氮氧化反应采用Monod方程,根据式(2)进行最大比反应速率(Vm)与底物半饱和常数Ks模拟。

    V=VmSKs+S (2)

    式中:V为单位污泥质量浓度的反应速率,kg·(kg·d)−1S为氨氮或亚氮底物浓度,mg·L−1Vm为单位污泥质量浓度的最大反应速率,kg·(kg·d)−1Ks为底物半饱和常数,mg·L−1

    氨氮和亚氮的氧化过程如图1所示。随着反应的进行,2组实验的氨氮浓度逐渐下降,硝酸盐浓度逐渐上升。实验结束时,3组NO3-N的生成量基本相同,但相比于空白对照组,NH2OH组和N2H4NH+4-N剩余量都在5 mg·L−1以下,接近1 mg·L−1,而空白对照组的NH+4-N剩余量>5 mg·L−1,这说明投加NH2OH和N2H4有利于氨氧化反应。从NO2-N积累量来看,在实验进行到150 min时,NH2OH组和N2H4组的NO2-N浓度逐步的提升,此时NAR分别达到25.67%和22.19%,而对照组的NO2-N浓度维持在较低水平,这表明NH2OH和N2H4的投加抑制NOB且促进NO2-N的积累。在150 min后,NH2OH组与N2H4组的NO2-N开始下降,这可能是由于NH2OH和N2H4的降解所致,使NOB的活性逐步恢复。在150 min时NH2OH组的NAR略高于N2H4组。

    图 1  NH2OH与N2H4处理组平行实验结果
    Figure 1.  Effects of NH2OH and N2H4 addition

    对实验过程中ORP进行了实时监测,结果如图1(d)所示。实验初期,CK组、NH2OH组、N2H4组的ORP分别为-56.1、-54.6、-76.3 mV,随着氨氮的逐步氧化,在第60 min时,CK组的ORP上升至80.5 mV,而NH2OH组和N2H4组的ORP分别为-51.2 mV和-91.8 mV,直至实验结束后,3组实验的ORP分别为109.6、153.9、39 mV。这是因为NH2OH与N2H4都是强还原剂,尽管在好氧条件仍能保持较低ORP水平,并维持约60 min。MA等[10]指出NOB从还原条件转变为氧化条件的适应期更长。30~90 min的还原条件有利于抑制NOB的代谢[11]。NH2OH组ORP在60 min后逐步升高,这可能由于NH2OH是氨氧化过程中间产物,AOB将NH2OH氧化为亚硝酸盐氮,因此,NH2OH的降解可能快于N2H4的降解。

    根据莫诺方程对反应动力学进行了模拟,结果如图2所示。NH2OH、N2H4与CK组最大氨氧化速率分别为0.32、0.42和0.20 kg·(kg·d)−1,在氨氮浓度低于20 mg L−1时,NH2OH组氨氧化速率高于N2H4组,这主要由于NH2OH组氨氮半饱和常数较低(NH2OH与N2H4分别为10.40 mg·L−1和19.64 mg·L−1)。NH2OH、N2H4与CK组亚硝酸盐氮最大氧化速率分别为0.14、0.16和0.22 kg·(kg·d)−1,NH2OH组亚硝酸盐氮氧化速率低于N2H4组。因此,在处理低氨氮废水方面,NH2OH投加比N2H4更有利于亚硝酸盐积累,故在后续驯化实验中采用NH2OH投加考察了其对亚硝化的影响及菌群分布、关键功能细菌的响应。

    图 2  莫诺方程拟合
    Figure 2.  Simulation with Monod equations

    采用序批式运行方式考察NH2OH投加对污泥驯化促进亚硝化的快速启动。实验过程中,每周期初期投加NH2OH使体系内浓度为2 mg·L−1。尽管有研究采用较高浓度NH2OH(5~10 mgN·L−1)促进亚硝酸盐累积[12],但由于高浓度NH2OH易引起污泥絮体破碎[13],本研究采用较低剂量(2 mg·L−1)考察了NH2OH对亚硝化的驯化效果。

    进、出水氮浓度与NAR结果如图3所示。投加NH2OH后,NO2-N表现出快速积累。初次投加NH2OH,经5 h反应,出水NO2-N浓度为20.5 mg·L−1,NAR为37.8%。说明投加NH2OH之后,NOB的活性被迅速抑制。随着驯化周期的增加,出水NO2-N浓度迅速升高,NO3-N浓度明显下降,NAR迅速增加,氨氧化反应未受明显影响。在第7个周期末亚硝酸盐积累率达到90%以上。在第27个周期,出水NO3-N浓度几乎为0,亚硝酸盐积累率达到100%。这表明NH2OH的投加对NOB活性的抑制获得较好效果,证明了投加NH2OH快速启动亚硝化的可行性。经过28个周期驯化后,进水NH+4-N几乎全部转化成NO2-N,亚硝酸盐积累率从37.8%上升至100%,亚硝化快速启动完成。经过低浓度NH2OH(2 mg·L−1)驯化后的污泥可以有效抑制NOB活性,降低NO2-N向NO3-N的氧化速率。这可能是因为NH2OH抑制亚硝酸盐氧化还原酶的合成,从而抑制了NOB的生长[14]

    图 3  亚硝化快速启动结果
    Figure 3.  Rapid start-up of nitritation process

    经过NH2OH投加处理后,微生物群落alpha多样性指数的变化如表1所示。通过9 d的驯化处理后,菌群多样性表现出升高趋势。NH2OH处理前后污泥混合液微生物群落结构变化如图4所示。门水平结构变化结果表明,变形菌门(Proteobacteria)、Ignavibacteriae的丰度明显降低,而拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi)的丰度有所升高。关键菌属的丰度的变化如图4(b)所示,DenitratisomaTerrimonasHyphomicrobiumNitrosomonasCandidatus MicrothrixDokdonellaDechloromonasWoodshloea丰度在NH2OH驯化后得到升高,而PseudomnasTrichococcusDiaphorobacteriaHydrogenophagaNitrospiraFerruginibacter等的丰度明显降低。其中DenitratisomaHyphomicrobiumDechloromonasPseudomnas是活性污泥系统中重要的反硝化细菌[15]

    表 1  alpha多样性指数与氮氧化功能细菌丰度
    Table 1.  Indexes of alpha diversity and abundances of nitrogen oxidizing bacteria
    样品alpha多样性指数功能细菌丰度/%
    覆盖率/%ShannonSimpsonACE indexAOBNOB
    驯化前99.44.360.036 69932.330.2650.206
    驯化后99.34.550.026 02973.564.4510.178
     | Show Table
    DownLoad: CSV
    图 4  NH2OH驯化前后菌群结构变化
    Figure 4.  Changes of microbial communities before and after NH2OH acclimatization

    为说明NH2OH对氨氧化与亚硝酸氧化关键功能微生物的影响,分析高通量测序结果发现Nitrosomonas是主要AOB,Nitropira是主要NOB。文献中关注较多的NOB菌属Nitrobacter未检出。由于在较低DO条件运行,NOB主要以Nitropira形式存在。JUBANY等[16]指出Nitropira对DO具有较强亲和性,在较低DO条件下发生亚硝酸盐氧化反应。NH2OH驯化前,AOB与NOB丰度丰度相似(表1),分别为0.265%和0.206%,经过9 d的羟胺驯化, AOB丰度有大幅提高、NOB丰度稍有降低,分别为4.451%和0.178%。AOB/NOB丰度比为25。AOB与NOB丰度的差异有利于实现亚硝酸盐累积。由于NH2OH是氨氧化反应的中间产物,其被AOB利用促进AOB细菌的增殖,此外由于NH2OH对NOB活性的抑制作用,进而对NOB丰度产生一定削减。

    1)通过NH2OH、N2H4组与空白对照组实验对比发现,通过NH2OH与N2H4单次投加均可实现亚硝酸盐累积。NH2OH与N2H4投加可维持较低ORP环境(-50~-100 mV)约60 min,这有利于NOB抑制。在低氨氮浓度(<20 mg·L−1)条件下,NH2OH投加可获得较大的氨氧化速率和较小的亚硝酸盐氧化速率。因此, 在污泥驯化实验中采用NH2OH投加考察对亚硝化反应的快速启动。

    2)采用NH2OH投加(2 mg·L−1)研究亚硝化的快速启动,经过9 d的驯化,实现亚硝酸盐积累率100%,微生物群落多样性略有增加,AOB大幅增加且NOB丰度稍有降低,AOB/NOB丰度比为25,可实现亚硝化的快速启动。

  • 图 1  沈阳市现状垃圾站点布局

    Figure 1.  Shenyang current situation garbage site layout

    图 2  沈阳市现状垃圾收集站点服务范围

    Figure 2.  Shenyang current situation garbage collection site service scope diagram

    图 3  封闭道路较多情景下位置分配模拟

    Figure 3.  Simulation of location allocation under more closed roads

    图 4  开放型道路较多情景下位置分配模拟

    Figure 4.  Simulation of location allocation in open road scenarios

    图 5  沈阳市垃圾站点位置分配优化结果

    Figure 5.  Optimization results of garbage site location allocation in Shenyang

    图 6  沈阳市垃圾站点未优化时空间覆盖范围

    Figure 6.  The spatial coverage of waste stations in Shenyang was not optimized

    图 7  沈阳市垃圾站点优化后空间覆盖范围

    Figure 7.  Spatial coverage of waste stations in Shenyang after optimization

  • [1] 刘卫平, 王玉明. 我国城乡生活垃圾处理行业创新路径研究——基于技术与政策的双重视角[J]. 环境保护, 2020, 48(15): 44 − 48. doi: 10.14026/j.cnki.0253-9705.2020.15.009
    [2] 王育宝, 何宇鹏. 城市废弃物处理温室气体排放的影响机制研究[J]. 西安交通大学学报(社会科学版), 2018, 38(1): 60 − 70. doi: 10.15896/j.xjtuskxb.201801007
    [3] 张劼颖, 李雪石. 环境治理中的知识生产与呈现——对垃圾焚烧技术争议的论域分析[J]. 社会学研究, 2019, 34(4): 146 − 169. doi: 10.19934/j.cnki.shxyj.2019.04.010
    [4] 刘建国, 刘意立. 我国生活垃圾填埋场渗滤液积累成因及控制对策[J]. 环境保护, 2017, 45(20): 20 − 23. doi: 10.14026/j.cnki.0253-9705.2017.20.004
    [5] 彭韵, 李蕾, 彭绪亚, 等. 我国生活垃圾分类发展历程、障碍及对策[J]. 中国环境科学, 2018, 38(10): 3874 − 3879. doi: 10.3969/j.issn.1000-6923.2018.10.034
    [6] 荣玥芳, 孙晓鲲, 张新月. “无废”理念下建筑垃圾资源化利用管理[J]. 城市建筑, 2021, 18(25): 16 − 20. doi: 10.19892/j.cnki.csjz.2021.25.03
    [7] 孔鑫, 刘建国, 刘意立, 等. 基于高压挤压预处理的生活垃圾干湿分离处理工艺不同场景综合效益分析[J]. 环境科学学报, 2020, 40(9): 3445 − 3452. doi: 10.13671/j.hjkxxb.2020.0213
    [8] 邹联沛, 宋琳, 李小伟等. 湿垃圾组分对厌氧消化抑制作用的研究进展[J]. 化工进展, 2020, 39(增2): 362 − 371. doi: 10.16085/j.issn.1000-6613.2020-1166
    [9] YANG N, ANDERS D, CHARLOTTE S, et al. A comparison of chemical MSW compositional data between China and Denmark[J]. Journal of Environmental Sciences, 2018, 74(12): 1 − 10.
    [10] 尹剑彤. 城市餐厨垃圾处理现状及资源化利用进展[J]. 能源研究与管理, 2015(1): 12 − 14. doi: 10.16056/j.1005-7676.2015.01.004
    [11] 潘玲阳, 吝涛, 崔胜辉, 等. 半城市化地区家庭生活垃圾特征及低碳对策: 以厦门市集美区为例[J]. 环境科学学报, 2011, 31(10): 2319 − 2328.
    [12] 王奔, 黄菊文, 朱昊辰, 等. 废塑料资源化高值利用的产业发展[J]. 上海节能, 2021(1): 20 − 25. doi: 10.13770/j.cnki.issn2095-705x.2021.01.004
    [13] 周汉城. 打造国内首个专业化的废玻璃加工利用基地 国家“城市矿产”示范基地——上海燕龙基再生资源利用示范基地[J]. 再生资源与循环经济, 2013, 6(11): 1 − 3. doi: 10.3969/j.issn.1674-0912.2013.11.001
    [14] 朱云. 生活垃圾分类背景下对广州市废玻璃回收利用的思考[J]. 再生资源与循环经济, 2021, 14(1): 16 − 20.
    [15] 孔林, 刘杰民, 韦艳, 等. 贵州省典型铅锌矿区居民血液总汞和甲基汞暴露及健康风险模型预测评估[J]. 环境科学研究, 2021, 34(6): 1499 − 1508. doi: 10.13198/j.issn.1001-6929.2021.03.08
    [16] 陈毅, 张京唐. 探寻社区常规化治理之道: 三种运行逻辑的比较——以上海垃圾分类治理为例[J]. 华中科技大学学报(社会科学版), 2021, 35(4): 47 − 55.
    [17] 叶林, 郭宇轩. 城市生活垃圾分类中的居民动力与人群差异——基于广州市的调查研究[J]. 北京行政学院学报, 2021(1): 54 − 63. doi: 10.3969/j.issn.1008-7621.2021.01.007
  • 加载中
图( 7)
计量
  • 文章访问数:  2637
  • HTML全文浏览数:  2637
  • PDF下载数:  13
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-08-17
  • 录用日期:  2022-09-09
  • 刊出日期:  2023-08-20
王永超, 林天润, 刘畅. 城市垃圾分类处理的经济效益与空间优化效益[J]. 环境保护科学, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026
引用本文: 王永超, 林天润, 刘畅. 城市垃圾分类处理的经济效益与空间优化效益[J]. 环境保护科学, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026
WANG Yongchao, LIN Tianrun, LIU Chang. Economic and space optimization benefits of municipal waste classification and disposal[J]. Environmental Protection Science, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026
Citation: WANG Yongchao, LIN Tianrun, LIU Chang. Economic and space optimization benefits of municipal waste classification and disposal[J]. Environmental Protection Science, 2023, 49(4): 121-126. doi: 10.16803/j.cnki.issn.1004-6216.2022080026

城市垃圾分类处理的经济效益与空间优化效益

    作者简介: 王永超(1986—),男,博士、副教授。研究方向:土地利用管理,城市与区域发展。E-mail:wangyc@lnu.edu.cn
  • 1. 辽宁大学公共管理学院, 沈阳 110136
  • 2. 东北大学文法学院,沈阳 110169
基金项目:
国家自然科学基金青年项目(41601154);辽宁省教育厅社科类青年科技人才“育苗”项目(LQN202019);辽宁水源保护区生态环境保护和民生安全协同创新中心研究成果

摘要: 我国快速城市化的过程中,城市人口迅速集聚,垃圾产量急剧上升,解决“垃圾围城”的现实问题成为大部分城市环境治理中的重点,化解垃圾分类处理难题成为环保研究的热点。自2017年生活垃圾分类政策推行以来,我国垃圾治理从减量化阶段迈向资源化阶段。在政策实施过程中,老城区逐渐暴露出垃圾收集设施不能满足居民需求,垃圾中转设施污染严重等问题。基于这一现实问题,以城区面积较大、城市更新较慢的沈阳市中心城区为例,核算沈阳市垃圾分类治理后产生的各种效益。利用空间网络分析和选址分析,对沈阳市中心城区垃圾处理站进行优化,使站点建设数量大大降低,服务覆盖范围大幅提升。最后,从源头分类、产业发展和空间优化3方面提出对策。

English Abstract

  • 随着我国经济迅速发展,城市化进程明显加速,人民生活水平逐步提高,城市生活垃圾产量连年增加,垃圾种类日趋多样,难以降解、有毒有害的垃圾产量占比提升。人口与资源之间的矛盾加剧,传统粗放的垃圾清运和处理方式难以解决数目庞大的城市生活垃圾,更难以调和紧张的土地资源和严峻的环境保护之间的矛盾[1-4],在全国范围内严格推进垃圾分类回收处理势在必行。

    沈阳市是建国初期国家重点建设起来的全国重工业基地之一,城镇化进程较其他城市起步稍早,但由于沈阳市老城区面积较大,近年来基础设施更新较慢,严重阻碍垃圾分类政策的落地与实施,问题较为突出。通过对沈阳市垃圾收集和转运设施的布局优化建立垃圾收集设施和转运设施布局科学合理的分析方法,不仅为沈阳市提出科学合理的布局方案,更为全国各城市的垃圾分类收集和转运设施的布局提供借鉴和思路。本文对完全分类状态下城市生活垃圾产生的各类效益进行定量研究,明确垃圾分类之后产生的各种效益。之后通过构建垃圾站点空间布局优化方法,对沈阳市城市基层空间内的生活垃圾收集及转运设施进行合理布局,满足居民进行垃圾分类的客观需求,降低城市垃圾分类处理的清运成本,减少环境污染,促进资源合理利用。

    • 城市生活垃圾分类方式包括两个方面:分类的主体,即由谁分类;分类标准,即如何分类。20世纪90年代,我国开始进行垃圾分类。这一阶段的主要表现是通过废品回收行业回收有价值的废弃物,如废纸、废塑料等。除可回收物以外的混合固体废弃物直接打包进入终端处置[5]。分类主体主要有居民和拾荒者两类。居民家庭往往会积攒可回收物以获得一些经济上的回报,拾荒者则会将垃圾桶或垃圾站中的可回收物分拣出来用以出售。

      2017年3月,《生活垃圾分类制度实施方案》出台,要求在全国46个城市先行实施生活垃圾强制分类。方案中要求各地结合自身实际制定出台办法,但必须将有害垃圾作为强制分类的类别之一。分类主体主要分为两种:一是强制分类的主体,主要是指公共机构和相关企业;二是引导分类的主体,主要指居民。在国家出台指导性文件后,各地陆续出台了垃圾分类的实施方案和管理办法。上海市是我国垃圾分类制度最为完善的城市,2019年1月31日,上海市颁布《上海市生活垃圾管理条例》,条例规定自2019年7月1日起,上海城市居民需要将生活垃圾进行分类、定点投放。上海市将生活垃圾划分为湿垃圾、干垃圾、可回收物和有害垃圾4类。上海市在2017年国家提出的分类主体基础上,将强制分类的主体扩大到了产生生活垃圾的单位和个人。2020年11月23日,沈阳市公布了《沈阳市生活垃圾分类管理办法》。办法中将生活垃圾划分为可回收物、有害垃圾、厨余垃圾和其他垃圾4种。分类的主体也涵盖了产生生活垃圾的单位、家庭和个人。

    • 通过对发达国家的垃圾治理演变历程的梳理,可以将垃圾治理划分为4个阶段:简单处置、无害处置、简单利用、综合利用[6]。简单处置是生活垃圾经过压缩等简单处置,直接进行填埋或焚烧,该阶段的垃圾处理方式对环境造成极大的污染和破坏。无害处置是指垃圾的末端处理采用无害化手段,如焚烧垃圾的烟气处置和填埋垃圾的卫生化。简单利用是前两个阶段的进一步发展,采用焚烧发电等技术手段简单利用垃圾中的部分资源属性。综合利用则是指在垃圾分类的基础上,根据不同垃圾的理化特征进行有针对性的垃圾资源化利用,这一阶段城市生活垃圾处理基本实现“无废化”。

      我国自建国以来,至改革开放前后,城市生活垃圾处理方式处于简单处置阶段。这一时期城镇人口相对较少,经济发展情况较差,人们对环保的认识和重视程度不高,生活垃圾集中收集后转运至城镇边缘的荒地进行简单填埋、堆肥,在部分人口稠密地区会进行露天焚烧,以达到减量化目标。改革开放后,我国经济迅速发展,人民生活水平显著提高,城镇化率迅速提升。由此产生了大量的城市生活垃圾,人们对环境保护的意识也逐渐提升,1986年城乡建设部发布了《关于处理城市垃圾、改善环境卫生面貌的报告》,拉起了垃圾无害化处理的序幕。至此,我国垃圾处理进入无害处置阶段,各地的垃圾无害化处理设施(如无害化焚烧炉、无害化填埋场等)开始兴建并陆续投入使用。

      2019年,国务院关于《“无废城市”建设试点工作方案》发布。“无废城市”强调固体废物源头减量、资源化利用,鼓励资源再生利用和循环经济的发展,要求提高对固体废物的综合处置能力,对城市生活垃圾处理方式提出了新的要求。这一概念提出后,我国生活垃圾处理方式逐渐向简单利用阶段转化。近年来,各大城市均已开始“无废城市”建设的尝试,如上海市制定处理标准:有害垃圾通过高温处理、化学分解等方式进行无害化处理;可回收垃圾通过相关企业进行资源化利用;湿垃圾通过生化处理、产沼、制肥等方式进行资源化利用或无害化处置;干垃圾通过焚烧等方式进行无害化处置和资源化利用。沈阳市也逐步推动“无废城市”建设,现阶段沈阳市有两处大型生活垃圾处理厂,其中,2019年大辛生活垃圾处理厂拥有全产业链的专业餐厨垃圾处理线,该处理线可以将水、油、气提出,并加以回收利用。2020年,老虎冲、大辛生活垃圾焚烧发电项目建成并投入使用。

      综上所述,我国生活垃圾处理方式经历了从第一、第二发展阶段,现阶段正在向第三发展阶段迈进。在前两个阶段,我国尚未推行垃圾分类政策,垃圾的投放形式主要以混合投放为主,造成垃圾处理资源化效率低,因此缺乏资源化处置环节。目前,由于我国垃圾分类政策的推行,城市生活垃圾已经初步具备分类处理和资源化利用的基础,但是由于末端垃圾处理能力有限,造成了“前端分好类、末端一勺烩”的现象。同时,由于社会对于再生资源的接受度依然较低,垃圾资源化产生的效益难以形成经济收入,相关产业发展缺乏动力。

    • 初级垃圾处理主要是指对其他垃圾进行焚烧及无害化处理,其核心特征是能源提升和环境保护,以城市生活垃圾中可以产生能源的部分加以利用,替代传统能源。同时进行无害化处理,以较低的环境外部成本取代传统能源较高的外部成本。

      其他垃圾在经过科学处理后,产生的总效益包括焚烧产生的经济效益及无害化处置产生的环境效益两部分,其中经济效益是指其他垃圾焚烧发电产生的效益,环境效益体现在其他垃圾焚烧发电相较于混合生活垃圾焚烧产生的污染物减排降低的环境外部成本,本文选取NOx及SO2主要核算指标。按照上述垃圾处理方式,参考相关文献[7]、辽宁省统计年鉴及《中华人民共和国国家标准》,核算2019年沈阳市其他垃圾进行焚烧发电后产生的经济效益和环境效益分别达到1.6亿元和74万元。

    • 中级垃圾处理主要指厨余垃圾和可回收物的处理与利用,其核心特征是产能提升和资源节约,以城市垃圾中可以再利用的部分创造新生产能,同时降低对新开采资源的需求,达到可持续发展的目的,实现资源经济双赢效应。

    • 厨余垃圾的化学组分主要包括蛋白质、脂肪、食物纤维、淀粉等有机物,含水量和有机质含量较高,养分十分丰富[8]。厨余垃圾是我国城市生活垃圾中占比最大的组成部分,体积庞大,且其含水量较大,传统的填埋处理方式和焚烧处理方式会造成大量的资源浪费、环境污染和经济损失[9-10]。在垃圾分类治理中,厨余垃圾的处置方式主要是生化处理、沼气利用和土地利用等。本文将厨余垃圾的处理方式设定为“高压挤压预处理+厌氧消化+沼渣土地利用”。这一处理方式包括厨余垃圾的高压挤压预处理、制沼、沼气发电和沼渣处理、制肥,在这个过程中厨余垃圾产生的总收益应分为两部分:一是厨余垃圾制造发电产生的经济效益;二是厨余垃圾分类处理后带来的资源节约效益。厨余垃圾处理带来的经济效益表现为焚烧发电产生的效益。厨余垃圾处理后带来的资源节约效益表现在:沼渣经处理后产生的生物肥料可以替代化肥(氮肥、钾肥、磷肥)进行土地利用,减少了对化肥原料资源的消耗;减少占用的土地资源。

      按照上述垃圾处理方式,参考文献[7]、辽宁省统计年鉴及《中华人民共和国国家标准》,核算得出2019年沈阳市厨余垃圾进行合理利用后将产生1.3亿元经济效益及13.4亿元资源效益。

    • 可回收物在经过科学的回收利用后,不仅会产生部分经济效益,而且可以替代部分能源和原料的开采和加工[11]。因可回收物种类较多,回收工艺较为复杂,本文仅以目前研究较为扎实,且占可回收物比重较大的纸制品、塑料制品以及对资源有较强替代性且分出率低的废玻璃回收利用效益作为可回收物的效益核算指标。

      根据问卷调研、相关研究结果及市场调研[12-14],经核算得出沈阳市2019年可回收物合理利用可以产生19.03亿元的经济效益和1.99亿元的资源效益。同时,根据各专家学者推测,现阶段我国资源回收利用产业发展尚不完善,没有形成规模效应。随我国垃圾分类政策不断贯彻落实,分类不断细化,各类资源回收利用产业在政策指导下蓬勃发展,可回收物的经济效益和资源效益将会呈几何倍数增长,绿色产业将成为新的经济增长极。

    • 高级垃圾处理环节主要指有害垃圾的无害化处理。现阶段,有害垃圾分出率较低,大部分有害垃圾随生活垃圾一起掩埋或焚烧,造成大量重金属元素、有毒有害物质进入大气、水源和土壤。在进行垃圾分类处理后,有害垃圾将统一进行无害化处理,降低了因污染而罹患疾病的风险,保障了人民的生命健康权,产生了社会和环境的综合效应。

      因为有害垃圾中有毒有害成分较多、含量较少,本文仅选取含量较大,研究成果较多的汞为例。根据相关研究成果[15],按照沈阳市有害垃圾产量和新生儿数量推算,有害垃圾分类处理后,假设汞全部进行无害化处理,则沈阳每年减少污染3 800万吨水、1 140万m3空气,减少30余个轻度智力低下儿童。

    • 城市垃圾处理工程量大,处理工序繁琐,频率高等特点,从整个垃圾处理的流程来看,包括垃圾的收集—临时储运—中转运输—压缩处理—运输—最终处理。在这个流程中从垃圾产生到压缩处理的4个环节都发生在城市内部基层空间之中。基层垃圾处理设施是最接近垃圾产生端的城市内设置的垃圾处理设施,主要包含垃圾转运站和垃圾收集(压缩)站,主承担临时储运、中转运输和压缩处理3项任务,它是为了减少垃圾长距离清运的运输费用而在垃圾产地(或集中地点)至垃圾最终处置设施之间所设的垃圾压缩和中转设施,其一方面直接面对居住小区的垃圾产生端,另一方面连接大型垃圾处理场的最终端,具有不可替代的纽带作用,对城市垃圾处理的效率起到非常重要的作用。

    • 目前,沈阳市内九区垃圾收集(压缩)站共281座,其中符合标准要求103座,正在密闭化改造136座,不符合环境卫生标准需优先异地重建的42座。现有的垃圾收集(压缩)均为地上形式,分为勾臂箱、压缩车、固定站3种形式。在垃圾站点进行工作的过程中对外部环境的影响较大,部分露天或距居住区较近的垃圾站点存在恶臭污染、噪声污染、污水污染和扬尘污染问题。从目前基层垃圾收集站的分布来看,垃圾收集站的分布存在空间不均衡的问题,老城区站点过度密集,沈阳市二环内空间基本实现全覆盖,而城市的外围区域、城市新区站点较少,沈阳市二三环之间存在服务盲区,三环外则基本为空白区域,导致基层空间垃圾收集的能力出现较大的不均衡。沈阳市现状垃圾站点布局,见图1,沈阳市现状垃圾收集站点服务范围,见图2

    • 选择合适的空间位置对于垃圾收集设施效率的发挥和周边地区垃圾处理需求的满足具有重要的作用。实现垃圾站点空间布局的优化将是提升沈阳市生活垃圾处理效率的重要措施。利用ArcGIS的位置分配方法,在给定需求和已有设施空间分布的情况下,在指定的候选选址中,利用提前设定的优化模型,让系统挑选出指定个数的选址。整个优化的过程:(1)模拟服务需求的空间分布(以居住区为基本单元);(2)模拟已有设施的空间分布;(3)设定所有可能的设施候选位置;(4)指定优化模式;(5)自动挑选合适的设施选择;(6)分析结果和进行调整。

      垃圾收集站点具有明显的空间服务范围,利用有限的垃圾收集站而服务最大化的覆盖空间范围是这类站点选择中最应该遵循的基本原则。因此,在利用位置分配法时设定的模型为最大化覆盖范围模型,目标是在所有候选的设施选址中挑选出给定数目的设施空间位置,使得位于设施最大服务半径之内的设施需求点最多。这个模型的设定符合政府利用最少的财政支出布置最少的设施量而服务最多的需求区域。

      同时,由于近年来沈阳市发展需要,城区迅速向外扩张,二环至三环内的广泛新建地区尚未配套足够的垃圾站点,以服务日后增加的居住人口。因此,需要人工挑选一定数量的候选垃圾站点。由于垃圾站点的兴建具有显著的“邻避效应”,所以在进行选址时依据最大服务范围和最少临近原则。最终,人工挑选了服务小区数量最大,和邻近小区数量最少的77个候选垃圾站点。

    • 对垃圾站点服务范围的相关设定是根据垃圾站点选址的要求,设定站点的服务范围为垃圾清运车辆15 min交通运距。利用高德路网数据,提取沈阳市三环以内路网,并建立路网模型,由于垃圾清运车辆为特殊车辆,将所有路口设置为不禁转,不受单行线限制,由于其工作时间往往为凌晨,基本不受道路其他车辆影响,以道路最大通行限速为标准。按照上述设定,垃圾站点的服务范围的模拟是以垃圾站点为中心向外辐射,并且最大辐射方向为道路交通最便捷方向。封闭道路较多情景下位置分配模拟,见图3。开放型道路较多情景下位置分配模拟,见图4

      理论上所有空间都具有产生垃圾的可能,都是垃圾站点的需求空间,但实际垃圾清运工作是以居住小区(社区)为单元开展,因此设定每一居住小区垃圾站点的需求点,并以小区中心点代表中心位置。最终,使用网络爬虫工具POIKit抓取2021年8月沈阳市区住宅小区POI 数据(基于高德地图) ,获取到含有经纬度、名称和类型等的主要信息POI 数据。经过对POI 数据进行坐标纠偏、筛选后,使用ArcGIS 10. 2 软件将其坐标数字化。

      在研究中,一共爬取沈阳市居住小区852个,最终选择在研究范围内的656个小区参与优化。利用ArcGIS10.2的网络分析工具,根据设定好的路网模型与垃圾站点最大服务范围的模型,进行垃圾站点空间布局的优化分析。经过分析,现状沈阳市垃圾站点覆盖研究范围内的448个小区,覆盖率为68%。经过模型优化之后,垃圾站点可以覆盖644个小区,覆盖率达到98%。在优化过程中一共有281个原有垃圾站点, 77个人工选择候选垃圾站点,总计358个候选垃圾站点参与优化,最终选取其中的205个为最终优化后垃圾站点,优化前原有的281个垃圾站点优化后仅保留128个,153个原有垃圾站点可以取消或更改位置。沈阳市垃圾站点位置分配优化结果,见图5

    • 根据空间优化的分析,最终形成沈阳市垃圾站点优化布局的方案。从最终的站点设置情况来看,得益于空间分配方案的进一步科学化,站点总量有了明显的降低,由281个降低为205个,可以有效减小垃圾站点建设与维护的任务量,节约大量人力与财力。从优化后的站点空间布局来看,一环和二环内部站点的密度得到了有效地降低,空间均衡化更强,有利于实现站点的最大化利用。从站点覆盖范围来看,二环内部除2个边缘新小区之外,实现范围全覆盖。二环至三环之间南部(沈阳新市政府地区)原覆盖率较低的空间,实现全面覆盖,仅仅在三环内边缘出现5个小区未覆盖情况。三环以外的广大区域由于缺乏现状站点支持,覆盖率仍较低,但在现状站点可支撑的范围内,也实现了覆盖范围的最大优化,三环外边缘的南部和西部小区基本实现全覆盖,仅有5个小区未覆盖。沈阳市垃圾站点未优化时空间覆盖范围,见图6,沈阳市垃圾站点优化后空间覆盖范围,见图7

    • 目前,我国急剧上升的垃圾产量与环境保护之间的矛盾已经比较严峻,传统的以减量化为目标的垃圾不分类处理方式已经不适应发展要求,以资源化和无害化为主的垃圾分类处理才是发展的趋势。我国城市垃圾分类处理虽然已经势在必行,但是由于不同城市执行的强度不同,不同地区的发展情况不同,导致垃圾分类处理的效果一直较差,从整个垃圾分类处理的效益和垃圾收集设施的优化来看,未来城市垃圾处理需要加强制度、产业和设施的全面配套。

      (1)分地区分居民精准施策,促进生活垃圾源头分类。根据不同社区的不同特征对症下药,单位家属集体型社区,由原单位、街道或居委会采用宣传月、社区积分评比等方式,利用社区原有的社会网络推进政策落实[16]。个体型社区由街道或居委会组织志愿者上门普及分类知识、派发垃圾袋和垃圾桶以及张贴“红黑榜”或开展积分兑换活动来激励居民践行垃圾分类。

      (2)完善制度,营造资源节约氛围[17]。适当增加惩处规定,界定政府的监管责任、居民的分类责任和企业的绿色生产责任。逐步推进计量收费制或者阶梯收费制,引导居民减少垃圾投放量,进而驱使企业减少过度包装。最后,除法律法规等“刚性”制度约束外,还要注重社会氛围的营造和社会心理的养成,通过学校教育、大众传媒等途径潜移默化地培育环境友好和资源节约的社会氛围,为垃圾分类制度的贯彻落实增加“柔性”的保障。

      (3)激活垃圾处理市场,延长垃圾分类处理产业链。垃圾分类处理前期投入巨大,后期收效明显,是一项民生工程,更是一项潜力巨大产业。目前我国垃圾分类产业链集中在产业链中段传统资源回收部分,末端处理和资源化利用处于起步阶段,未来应该积极培育垃圾分类处理下游产业,为相关企业提供必要的资金支持、财税补贴和政策支持。

      (4)实现基层垃圾收集设施的分类配套和空间科学配置。要实现垃圾分类处理必须实现垃圾收集、转运设施的分类,要有条件的开展各类垃圾分类站点的建设。同时要强化垃圾站点空间科学配置,实现利用最少的站点数量满足最大的垃圾服务覆盖范围,降低垃圾收集中的建设成本和维护成本。

    参考文献 (17)

返回顶部

目录

/

返回文章
返回