-
溴酚类化合物(bromophenols,BrPs)不仅具有人为来源,被用作阻燃剂、木材防腐剂等,也具有海洋藻类合成等天然来源,是重要的海洋风味物质[1-2]. 根据苯环上溴原子的取代数目和位置不同,BrPs有19种化合物(图1),在大气、水、土壤、油松树皮及海洋生物等环境样本中均有检出[3-6],甚至在血液和脐带血等人体样本中也有检出[7],电子厂工人血清中检出的BrPs浓度为360 pg·g−1 ww (湿重) [8]. 2,4,6-三溴酚 (2,4,6-bromophenol,2,4,6-triBrP)和五溴酚(pentabromophenol,pBrP)不仅能破坏生物体内甲状腺激素的平衡,也具有显著的抗雌激素效应[9-10]. 因此,BrPs逐渐引起学者们的广泛关注.
海洋中的螺类、贝类和鱼类等动物经摄食藻类可以累积BrPs,经转化等途径也可以将一些人为污染物(如多溴代二苯并二噁英及多溴代二苯并呋喃等)转化为BrPs[11]. 海产品在居民(特别是沿海居民)的膳食结构中占有重要地位,随着人们对健康生活的需求,海产品在膳食中所占的比重呈现显著增加趋势,因此关注海产品质量安全极为必要. 已有研究发现,中国香港市售不同种类海产品中BrPs的含量和分布存在差异[12],但我国其他城市市售海产品中BrPs的赋存情况,特别是海产品中常食用的部位(如贝肉、鱼肉)中BrPs的赋存尚不清晰. 因此,本研究选取9种居民喜食且消费量大的海产品,开展江苏省连云港市海产品中19种BrPs的组织分布及种间差异的研究,为BrPs的生态健康风险和食品安全提供数据支撑.
不同种类海产品中溴酚的含量及组织分布
Concentrations and tissue distributions of bromophenols in nine different seafood
-
摘要: 溴酚类化合物(bromophenols,BrPs)可以在藻类等海洋生物中自然生成,是海洋风味物质,在海洋生物中广泛检出.同时,一些BrPs也是广为应用的溴代阻燃剂或溴代阻燃剂的合成前体化合物,不仅具有生物毒性且能与多溴二苯醚、四溴双酚A、甚至多溴代二苯并二噁英及多溴代二苯并呋喃等强毒性有机污染物发生相互转化.本研究利用HPLC-MS/MS分析了我国江苏省连云港市市场上销量较高的贝类、螺类和鱼类(各3种)中,19种BrPs的含量及组织分布.结果可见,样品中共检出4种BrPs,分别是4-一溴酚(4-monobromophenol,4-mBrP)、2,4-二溴酚(2,4-dibromophenol,2,4-diBrP)、2,6-二溴酚(2,6-dibromophenol,2,6-diBrP)和2,4,6-三溴酚(2,4,6-tribromophenol,2,4,6-triBrP),其中2,4,6-triBrP含量水平和检出率最高,在9种海产品不同组织中的浓度范围为0.512—56.0 ng·g−1 dw (干重)(平均值(14.1±13.8) ng·g−1 dw). 生物样本中,∑4BrPs的范围为0.806—56.1 ng·g−1 dw(平均值(18.2±15.5) ng·g−1 dw).海产品中BrPs的含量具有组织分布差异性和物种差异性,其中,3种贝类个体中∑4BrPs平均含量((16.8±12.6) ng·g−1 dw)高于3种螺类((15.0±8.60) ng·g−1 dw)和鱼类((10.1±2.17) ng·g−1 dw).不同种类海产品中∑4BrPs的平均含量显示,贝类肉中含量((18.4±14.0) ng·g−1 dw)高于鳃((13.5±8.68) ng·g−1 dw)和外套膜((11.5±8.71) ng·g−1 dw),螺的内脏含量((21.7±12.6) ng·g−1 dw)远高于螺肉((3.37±2.41) ng·g−1 dw),鱼内脏和鳃中∑4BrPs平均含量((36.9±4.22)和(36.5±13.9)ng·g−1 dw)远高于鱼肉((3.46±1.32) ng·g−1 dw).Abstract: As the seafood flavor components, bromophenols (BrPs) are naturally produced and widely found in marine organisms (e.g. algae). Some of the BrP congeners are also the widely used as flame retardants or the precursors of some flame retardants. BrPs not only have relatively high biological toxicity but also transformed reciprocally with some highly toxic organic pollutant (e.g. polybrominated diphenyl ethers, tetrabromobisphenol A, polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans). The concentrations and tissue distributions of 19 BrPs in 9 seafood (i.e. the shellfish, snail, and fish samples) with the high sales in Chinese market were explored by HPLC-MS/MS in this study. Concentrations and tissue distributions of BrPs in different seafood were specially focused. Four BrPs, including 4-monobromophenol (4-mBrP), 2,4-dibromophenol (2,4-diBrP), 2,6-dibromophenol (2,6-diBrP), and 2,4,6-tribromophenol (2,4,6-triBrP), were found in different tissues of 9 seafood and ∑4BrPs ranged from 0.806 to 56.1 ng·g−1 dw with mean concentration of (18.2±15.5) ng·g−1 dw. The concentration and detection frequency of 2,4,6-triBrP was highest with the concentration ranging from 0.512 to 56.0 ng·g−1 dw (Mean: (14.1±13.8) ng·g−1 dw). Species dependent accumulation and tissues dependent distribution of BrPs were found in seafood. The mean concentration in whole shellfish ((16.8±12.6) ng·g−1 dw) was higher than that in snails ((15.0±8.60) ng·g−1 dw) and fish ((10.1±2.17) ng·g−1 dw). ∑4BrPs in the shell meat ((18.4±14.0) ng·g−1 dw) was higher than that in gill ((13.5±8.68) ng·g−1 dw) and mantle ((11.5±8.71) ng·g−1 dw). For three snails, ∑4BrPs in viscus ((21.7±12.6) ng·g−1 dw) was higher than that in conch ((3.37±2.41) ng·g−1 dw). For three fish, ∑4BrPs in viscus ((36.9±4.22) ng·g−1 dw) and gill ((36.5±13.9) ng·g−1 dw) was higher than that in flesh ((3.46±1.32) ng·g−1 dw).
-
Key words:
- bromophenols /
- tissue distribution /
- seafood.
-
表 1 9种海产品的样本数量、组织重量以及含水率.
Table 1. Numbers, weights, and the moisture content for the 9 tested seafood samples.
种类
Species拉丁名
Latin name数量
Quantities部位
Tissues湿重/g
Wet weight干重/g
Dry weight含水率/%
Moisture content牡蛎 Crassostrea gigas n=20 鳃 17.0 3.09 81.8 外套膜 20.6 4.49 78.2 肉 91.0 21.0 76.9 扇贝 Patinopecten yessoensis n=30 鳃 23.9 5.96 75.1 外套膜 25.3 6.72 73.4 肉 157 37.7 75.9 紫贻贝 Mytilus edulis n=35 鳃 17.4 3.42 80.3 外套膜 43.8 12.0 72.6 肉 105 22.1 79.0 脉红螺 Rapana venosa n=20 内脏 46.5 14.5 68.9 肉 113 27.4 75.7 花螺 Babylonia areolata n=35 内脏 55.7 18.2 67.2 肉 113 27.4 75.7 扁玉螺 Glossaulax didyma n=35 内脏 99.5 32.4 67.4 肉 200 55.0 72.5 小黄花鱼 Larimichthys crocea n=4 鳃 18.5 6.42 65.3 内脏 67.1 29.2 56.6 鱼肉 553 210 61.9 金鲳鱼 Trachinotus ovatus n=3 鳃 17.8 6.08 65.8 内脏 57.3 35.6 37.8 鱼肉 487 210 57.0 海鲈鱼 Lateolabrax japonicus n=3 鳃 38.4 13.1 66.0 内脏 88.8 58.7 33.9 鱼肉 621 180 70.9 注:湿重、干重、含水率均基于n个个体的混合样品计量.
Note:The wet weight, dry weight, and the moisture content were based on the mixed samples of individualities.表 2 不同BrPs的母离子、定量离子、碰撞能和去簇电压
Table 2. The precursor and quantitative ion, collision energy, and declustering potential for different BrP congeners.
化合物
Compounds母离子(m/z)
Precursor ion定量离子(m/z)
Quantitative ion碰撞能/eV
Collision energy去簇电压/eV
Declustering potentialmBrPs 170.8 78.8 −22 −85 172.8 80.8 −22 −85 diBrPs 250.8 78.8 −30 −110 80.8 −30 −110 triBrPs 328.8 78.8 −70 −120 80.8 −70 −120 tetraBrPs 408.6 78.8 −85 −130 80.8 −85 −130 pBrP 488.6 78.8 −82 −130 80.8 −82 −130 13C6−4-mBrP 176.8 78.8 −22 −85 178.8 80.8 −22 −85 13C6−2,4-diBrP 256.8 78.8 −30 −110 80.8 −30 −110 13C6−2,4,6-triBrP 334.9 78.8 −70 −120 80.8 −70 −120 13C6−2,3,4,6-tetraBrP 414.6 78.8 −85 −130 80.8 −85 −130 13C6−PBrP 494.6 78.8 −82 −130 80.8 −82 −130 -
[1] WHITFIELD F, HELIDONIOTIS F, DREW M. The role of diet and environment in the natural flavours of seafoods [J]. Flavour Science, 1996, 197: 3-12. [2] LIN K, SONG L, ZHOU S, et al. Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br [J]. Chemosphere, 2016, 155: 266-273. doi: 10.1016/j.chemosphere.2016.04.064 [3] HAN W, WANG S, HUANG H, et al. Simultaneous determination of brominated phenols in soils [J]. Journal of Environmental Sciences, 2013, 25(11): 2306-2312. doi: 10.1016/S1001-0742(12)60298-8 [4] REINEKE N, BISELLI S, FRANKE S, et al. Brominated indoles and phenols in marine sediment and water extracts from the north and baltic seas-concentrations and effects [J]. Archives of Environmental Contamination and Toxicology, 2006, 51(2): 186-196. doi: 10.1007/s00244-005-0135-3 [5] XIONG J, LI G, AN T, et al. Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China [J]. Environmental Pollution, 2016, 219: 596-603. doi: 10.1016/j.envpol.2016.06.021 [6] 王万洁, 侯兴旺, 栗笑迎, 等. 我国不同城市油松树皮中溴酚的赋存特征 [J]. 环境化学, 2021, 40(11): 3344-3350. doi: 10.7524/j.issn.0254-6108.2021040802 WANG W, HOU X, LI X, et al. Occurrence of bromophenols in pine bark from different cities in China [J]. Environmental Chemistry, 2021, 40(11): 3344-3350(in Chinese). doi: 10.7524/j.issn.0254-6108.2021040802
[7] CHEN Z J, LIU H Y, HO K L, et al. Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) in paired maternal and neonatal samples from South China: Placental transfer and potential risks [J]. Environmental Research, 2016, 148: 72-78. doi: 10.1016/j.envres.2016.03.021 [8] EGUCHI A, NOMIYAMA K, DEVANATHAN G, et al. Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India [J]. Environment International, 2012, 47: 8-16. doi: 10.1016/j.envint.2012.05.003 [9] YANG M T, ZHANG X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete platynereis dumerilii [J]. Environmental Science & Technology, 2013, 47(19): 10868-10876. [10] LIU J Q, ZHANG X R. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: Halophenolic DBPs are generally more toxic than haloaliphatic ones [J]. Water Research, 2014, 65: 64-72. doi: 10.1016/j.watres.2014.07.024 [11] SCHULER D, JAGER J. Formation of chlorinated and brominated dioxins and other organohalogen compounds at the pilot incineration plant VERONA [J]. Chemosphere, 2004, 54(1): 49-59. doi: 10.1016/S0045-6535(03)00756-2 [12] CHUNG H Y, MA W C J, KIM T S. Seasonal distribution of bromophenols in selected Hong Kong seafood [J]. Journal of Agricultural and Food Chemistry, 2003, 51(23): 6752-6760. doi: 10.1021/jf034632r [13] CHI X Y, LIU J Y, YU M, et al. Analysis of bromophenols in various aqueous samples using solid phase extraction followed by HPLC-MS/MS [J]. Talanta, 2017, 164: 57-63. doi: 10.1016/j.talanta.2016.11.010 [14] ESTRELLA L F, FERREIRA V B, GALLISTL C, et al. Occurrence of halogenated natural products in highly consumed fish from polluted and unpolluted tropical bays in SE Brazil [J]. Environmental Pollution, 2018, 242: 684-691. doi: 10.1016/j.envpol.2018.07.030 [15] CHUNG H Y, MA W C J, ANG P O, et al. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong [J]. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2619-2624. doi: 10.1021/jf026082n [16] NOMIYAMA K, EGUCHI A, MIZUKAWA H, et al. Anthropogenic and naturally occurring polybrominated phenolic compounds in the blood of cetaceans stranded along Japanese coastal waters [J]. Environmental Pollution, 2011, 159(12): 3364-3373. doi: 10.1016/j.envpol.2011.08.035 [17] WANG H S, DU J, HO K L, et al. Exposure of Hong Kong residents to PBDEs and their structural analogues through market fish consumption [J]. Journal of Hazardous Materials, 2011, 192(1): 374-380. [18] SIM W J, LEE S H, LEE I S, et al. Distribution and formation of chlorophenols and bromophenols in marine and riverine environments [J]. Chemosphere, 2009, 77(4): 552-558. doi: 10.1016/j.chemosphere.2009.07.006 [19] BOYLE J L, LINDSAY R C, STUIBER D A. Bromophenol distribution in salmon and selected seafoods of fresh‐ and saltwater origin [J]. Journal of Food Science, 1992, 57(4): 918-922. doi: 10.1111/j.1365-2621.1992.tb14323.x [20] AZNAR-ALEMANY O, TRABALON L, JACOBS S, et al. Occurrence of halogenated flame retardants in commercial seafood species available in European markets [J]. Food and Chemical Toxicology, 2017, 104: 35-47. doi: 10.1016/j.fct.2016.12.034 [21] FULLER S C, FRANK D C, FITZHENRY M J, et al. Improved approach for analyzing bromophenols in seafood using stable isotope dilution analysis in combination with SPME [J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8248-8254. doi: 10.1021/jf801126b [22] DAHLGREN E, LINDQVIST D, DAHLGREN H, et al. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain [J]. Chemosphere, 2016, 144: 1597-1604. doi: 10.1016/j.chemosphere.2015.10.024 [23] WHITFIELD F B, HELIDONIOTIS F, SVORONOS D, et al. The source of bromophenols in some species of Australian ocean fish [J]. Water Science and Technology, 1995, 31(11): 113-120. doi: 10.2166/wst.1995.0416