-
骆马湖地处江苏省北部,作为徐州市和宿迁市的重要水源地,以及我国南水北调东线工程的重要调节水库,其水质状况对人体健康和环境生态安全具有重要意义。
作为典型持久性有机污染物,多环芳烃(PAHs)具有较强的致癌、致畸、致突变等毒性[1],严重影响人体健康和生态安全。美国环境保护局(US EPA)对此高度重视,已将毒性较强的16种PAHs列在优先控制污染物[2-3]名单中。我国在发展过程中也紧跟国际社会发展需要,并结合我国实际环境污染状况,也已将7种PAHs列在我国水中优先控制污染物名单中[4]。环境中的PAHs主要来自石油等不完全燃烧、泄露、精炼及加工[5]。研究表明,我国多个地表水已被PAHs污染[6-9],且污染水平相对较高[9-11]。随着我国能源消耗的飞速增加,PAHs污染已成为我国面临的最严重环境问题之一[12]。作为京杭运河的一部分,骆马湖担负着江苏省南北航运的交通重任。船舶石油泄漏,以及骆马湖流域农业生物质的燃烧、车船尾气排放等均可对水质产生不良影响,威胁骆马湖供水和灌溉功能。然而,关于骆马湖及其入湖河流水中PAHs的时空分布特征与风险评估的报道较少。开展骆马湖流域水中PAHs的污染水平、分布及风险状况研究,对保障骆马湖水源地和饮用水安全具有重要意义。
骆马湖及其入湖河流水中PAHs时空分布特征及风险评估
Spatiotemporal distribution characteristics and risk assessment of PAHs in Luoma Lake and its inflow river
-
摘要: 为研究骆马湖及其入湖河流水中PAHs的时空分布特征、健康风险及生态风险状况,分别于2019年11月(枯水期)、2020年4月(平水期)和2020年7月(丰水期)对骆马湖及其入湖河流水样中16种多环芳烃(PAHs)进行了采样调查研究,并采用健康风险评价和生态风险评价方法对骆马湖流域水中PAHs进行风险评估。结果表明,骆马湖及其入湖河流水中PAHs总量在5.45~264 ng/L范围,ΣPAHs浓度丰水期>平水期>枯水期,低环PAHs平均质量浓度明显高于高环PAHs。ΣPAHs含量较高的点位主要位于京杭运河河道等航运繁忙的区域,来源分析结果表明,该区域PAHs可能主要来自水上交通过程中石油制品的泄漏。骆马湖流域内的4个水源地、2个国考断面、1个省考断面和5个省界点位水中PAHs浓度均符合相应的水质标准。骆马湖湖区水中PAHs经饮水途径和经皮肤接触途径所引起的致癌风险和非致癌风险均可忽略,但在丰水期S16和S38水中PAHs可能造成中等生态风险,其中荧蒽(Fla)、苯并[g, h, i]苝(BghiP)和芘(Pyr)具有较高生态风险。Abstract: The spatiotemporal distribution characteristics, health risk and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in water of Luoma Lake and its main inflow rivers were investigated in November 2019 (dry season), April 2020 (normal season) and July 2020 (wet season). 16 types of PAHs were sampled and the risk was assessed by the health risk and the ecological risk assessment methods. The result showed that the total PAHs concentrations in Luoma Lake Basin ranged from 5.45 ng/L to 264 ng/L for different seasons with the order of wet season> normal season> dry season. The concentration of the low ring PAHs was significantly higher than these of the high ring. The ΣPAHs concentration in the busy shipping areas, such as Beijing Hangzhou canal was higher than other studied areas. The source analysis showed that the PAHs in the above mentioned area mainly came from the leakage of petroleum products in the process of water transportation. The concentrations of PAHs in four water sources, two national and one provincial sections and five provincial boundary sampling points in Luoma Lake basin all met the corresponding water quality standards. The health risk of PAHs in Luoma Lake area through drinking water and skin contact could be ignored. However, PAHs in water of S16 and S38 in wet season belonged to a high ecological risk level, and fluoranthene (Fla), benzo [g, h, i] perylene (BghiP) and pyrene (Pyr) were high risk PAHs, which contributed to the higer ecological risk.
-
Key words:
- Luoma Lake /
- inflow river /
- PAHs /
- spatiotemporal distribution characteristics /
- health risk /
- ecological risk
-
表 1 部分PAHs暴露浓度及风险计算参数
物质 化合物质
登记号(CAS)皮肤渗透
系数[17]SF/(kg·d) ·mg−1 RfD/mg·(kg·d)−1 c QV(NCs)/ng·L−1 cQV( MPCs)/ng·L−1 经口摄入 皮肤接触 经口摄入 皮肤接触 NaP 91-20-3 0.069 0.007 3 0.007 3 0.02 0.016 0 12.0 1 200 Acy 208-96-8 0.138 0.007 3 0.007 3 0.06 0.018 6 0.7 70 Ace 83-32-9 0.155 0.007 3 0.007 3 0.06 0.060 0 0.7 70 Flu 86-73-7 0.214 0.007 3 0.007 3 0.04 0.020 0 3.0 300 Phe 85-01-08 0.300 0.007 3 0.007 3 0.03 0.030 0 3.0 300 Fla 206-44-0 0.360 0.007 3 0.007 3 0.04 0.040 0 0.7 70 Pyr 129-00-0 0.510 0.007 3 0.007 3 0.03 0.040 0 0.7 70 BghiP 191-24-2 2.068 0.07 3 0.073 0 0.03 0.030 0 0.3 30 表 2 ∑PAHs的风险分级
风险等级 RQ∑PAHs(NCs) RQ∑PAHs(MPCs) 极低风险 0~1 - 低风险 ≥1;<800 =0 中等风险 1 ≥800 =0 中等风险 2 <800 ≥1 高风险 ≥800 ≥1 表 3 点位S38和S16PAHs单体对致癌风险值和RQMPCs的贡献
% 物质 S38 S16 Ring Rderm RQ∑PAHs(MPCs) RQ∑PAHs(MPCs) NaP 1.9 4.0 0.2 0.6 Acy 0.7 1.5 1.5 4.6 Ace 1.2 2.5 2.5 6.5 Flu 1.5 3.1 0.7 1.5 Phe 6.4 13.8 3.2 2.5 Fla 15.4 33.0 33.0 10.8 Pyr 13.7 29.3 29.3 11.2 BghiP 59.3 12.7 29.6 62.2 -
[1] JONES K C, DE VOOGT P. Persistent organic pollutants (POPs): state of the science[J]. Environmental Pollution, 1999, 100(1-3): 209 − 221. doi: 10.1016/S0269-7491(99)00098-6 [2] U. S. Environmental Protection Agency. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons (EPA/600/R-93/089)[M]. Washington DC: United State Environmental Protection Agency, Office of Research and Development, 1993. [3] S B. Regionally based assessment of persistent toxic substances (GF /3100-98-07)[M]. Kenya: UNEP, 2003: 125-158. [4] 周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单[J]. 中国环境监测, 1990, 6(4): 1 − 3. doi: 10.19316/j.issn.1002-6002.1990.04.001 [5] KEYTE I J, HARRISON R M, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons-A review[J]. Chemical Society Reviews, 2013, 42(24): 9333 − 9391. doi: 10.1039/c3cs60147a [6] 吴兴让, 尹平河, 赵玲, 等. 珠江广州段水体微表层与次表层中多环芳烃的分布与组成[J]. 环境科学学报, 2010, 30(4): 868 − 873. [7] ZHANG L, DONG L, REN L, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China[J]. Journal of Environmental Sciences (China), 2012, 24(2): 335 − 342. doi: 10.1016/S1001-0742(11)60782-1 [8] SUN J H, WAND G L, CHAI Y, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China[J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1614 − 1624. doi: 10.1016/j.ecoenv.2008.05.010 [9] 范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价[J]. 环境科学, 2019, 40(5): 2101 − 2114. [10] ARIAS A H, SPETTER C V, FREIJE R H, et al. Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp. ) and fish (Odontesthes sp. ) from Bahía Blanca Estuary, Argentina[J]. Estuarine, Coastal and Shelf Science, 2009, 85(1): 67 − 81. doi: 10.1016/j.ecss.2009.06.008 [11] FERNANDES M B, SICRE M A, BOIREAU A, et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary[J]. Marine Pollution Bulletin, 1997, 34(11): 857 − 867. doi: 10.1016/S0025-326X(97)00063-5 [12] ZHI H, ZHAO Z, ZHANG L. The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China[J]. Chemosphere, 2015, 119: 1134 − 1140. doi: 10.1016/j.chemosphere.2014.09.054 [13] U. S. Environmental Protection Agency. EPA Method 8270E (SW-846): Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC-MS)[EB/OL]. https://www.epa.gov/esam/epa-method-8270e-sw-846-semivolatile-organic-compounds-gas-chromatographymass-spectrometry-gc. [14] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境科学出版社, 2013. [15] 朱琳跃, 蓝家程, 孙玉川, 等. 典型岩溶区土壤和地下水中多环芳烃的分布特征及健康风险研究[J]. 环境科学学报, 2010, 40(9): 3361 − 3374. doi: 10.13671/j.hjkxxb.2020.0181 [16] KALF D F, CROMMENTUJIN T, VAN DE PLASSCHE E J. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs)[J]. Ecotoxicology and Environmental Safety, 1997, 36(1): 89 − 97. doi: 10.1006/eesa.1996.1495 [17] 曹治国, 刘静玲, 王雪梅, 等. 漳卫南运河地表水中溶解态多环芳烃的污染特征、风险评价与来源辨析[J]. 环境科学学报, 2010, 30(2): 254 − 260. [18] 李晓静, 于玉玲, 马莉, 等. 太湖胥口湾表层水和沉积物中多环芳烃的浓度水平及生态风险[J]. 生态毒理学报, 2016, 11(2): 547 − 555. [19] 王晓慧, 毕春娟, 韩景超, 等. 再悬浮过程中河流底泥PAHs 迁移与释放[J]. 环境科学, 2014, 35(6): 2185 − 2192. [20] 中国环境科学研究院, 国家环境保护总局. 地表水环境质量标准GB 3838-2002[S]. 北京: 中国环境科学出版社, 2002. [21] U. S. Environmental Protection Agency. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (part F), Supplemental Guidance for Inhalation Risk Assessment) [R]. EPA/540/R/070 /002. Washington, DC: Office of Superfund Remediation and Technology Innovation, 2009. [22] Canadian Council of Ministers of the Environment. Canadianwater Quality Guidelines for the Protection of Aquatic Life[S]. 2018. [23] 张俊, 王乙震, 袁媛, 等. 京津冀地区典型地表水水源地多环芳烃污染特征分析[C]//持久性有机污染物论坛2017暨第十二届持久性有机污染物学术研讨会论文集, 武汉, 2017. [24] 宋玉梅, 王畅, 刘爽, 等. 广州饮用水水源地多环芳烃分布、来源及人体健康风险评价[J]. 环境科学, 2019, 40(8): 3489 − 3500. doi: 10.13227/j.hjkx.201811006 [25] 于英鹏, 刘敏. 太湖流域水源地多环芳烃分布、溯源与生态风险评估[J]. 水资源保护, 2017, 33(3): 82 − 89. doi: 10.3880/j.issn.1004-6933.2017.03.015 [26] MA W L, LIU L Y, QI H, et al. Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua river Basin, China[J]. Environmental Monitoring and Assessment, 2013, 185(10): 8399 − 8409. doi: 10.1007/s10661-013-3182-7 [27] WU B, ZHANG Y, ZHANG X X, et al. Health risk from exposure of organic pollutants through drinking water consumption in Nanjing, China[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(1): 46 − 50. doi: 10.1007/s00128-009-9900-8 [28] YUNKER M B, MACDONALD R W, VINGARZAN R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489 − 515. doi: 10.1016/S0146-6380(02)00002-5