-
活性污泥法于20世纪初在英国发展起来,因其经济以及高效的处理效果,迅速在全球的污水厂得到广泛的应用和发展。在正确的运行工艺及运行条件下保证微生物在曝气过程中有效除去水中有机物、以及二沉池中良好的泥水分离是活性污泥法出水水质达标的关键[1]。污泥的沉降性能决定了泥水分离的效果,表征污泥沉降性能的主要指标为沉降比(Settled Volume,SV30)和污泥体积指数(Sludge Volume Index,SVI,mL/g),一般SVI<70 mL/g,则认为污泥缺乏活性;SVI>200 mL/g认为发生污泥膨胀,污泥膨胀一旦发生将导致二沉池泥水分离受阻,污泥处理系统的污泥流失,出水水质恶化、处理能力下降等,影响市政工程的正常运行。尽管经过无数的小试、中试甚至污水厂的实验研究,污泥膨胀的处理仍然是一大难题,堪称污水处理界的“癌症”。本文综述了污泥膨胀的研究现状,对大多数污泥膨胀的解决方案做了总结及归纳,并对未来研究方向及重点难点进行展望。
污泥膨胀特性及控制研究现状
Research status of characteristics and control of sludge bulking
-
摘要: 文章通过总结大量研究成果,重点阐述了污泥膨胀的特性研究现状,并根据特性研究,分析污泥膨胀主要产生因素和控制措施。其次,结合丝状菌膨胀机理及形态结构特征,阐述了3种选择器控制污泥膨胀的原理和其他可持续性控制措施。最后从微生物方向对未来污泥膨胀控制及研究进行了展望。Abstract: This paper summarizes a lot of research results, focuses on the characteristics and research status of the sludge bulking, and analyzes main factors and control measures of it. Based on the mechanism and morphology of filamentous bacteria bulking, the principle of controlling sludge bulking by three kinds of selectors and other sustainable control measures are described. Finally, prospects for the future control and research of sludge bulking from the microbiological direction are prospected.
-
Key words:
- sludge bulking /
- sewage treatment /
- activated sludge process /
- filamentous bacteria /
- morphology
-
表 1 不同环境条件下引起膨胀的丝状菌
水质条件 丝状菌种类 低DO Type1701、浮游球衣细菌、软发菌 低底物浓度 Type021N、Type0041、Type0092、Type0581、Type0961、Type0803、微丝菌、软发菌、诺卡式菌 高硫化物 发硫菌、Type021N、贝氏硫菌 营养缺失 发硫菌、浮游球衣细菌、Type021N、软发菌、Type0041、Type0657 低pH 真菌 -
[1] TARPY D, DAVID R, MATTILA, et al. Development of the Honey Bee Gut Microbiome throughout the Queen-Rearing Process[J]. Applied and Environmental Microbiology, 2015, 81(9): 3182 − 3191. doi: 10.1128/AEM.00307-15 [2] 郝晓地, 朱景义, 曹秀芹. 污泥膨胀形成机理及控制措施研究现状和进展[J]. 环境污染治理技术与设备, 2006, 7(5): 1 − 9. [3] LIU Y, FANG H. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge[J]. Critical Reviews in Environmental Science and Technology, 2003, 33(3): 237 − 273. doi: 10.1080/10643380390814479 [4] ADAV S S, LEE D, TAY J. Extracellular polymeric substances and structural stability of aerobic granule[J]. Water Research, 2008, 42(6-7). [5] SEVIOUR T. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges[J]. Water Research: A Journal of the International Water Association, 2009, 43(18): 4469 − 4478. [6] JUNPING L, YAQIN W, CHEN Z, et al. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge[J]. Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 2014: 152, 53 − 58. [7] CHRYSI S, BRUCE E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research:A Journal of the International Water Association, 2002, 36(11): 2711 − 2720. [8] SEZGIN, MESUTA, DAVID L, et al. A unified theory of filamentous activated sludge bulking[J]. Journal (Water Pollution Control Federation), 1978, 50(2): 362 − 381. [9] LIU Y, LIU Y, TAY J. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology, 2004, 65(2): 143 − 148. [10] JIN B, MARIE B, LANT P. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge[J]. Chemical Engineering Journal. 2003, 95(1-3): 221-234 . [11] LI W M, LIAO X W, GUO J S, et al. New insights into filamentous sludge bulking: The potential role of extracellular polymeric substances in sludge bulking in the activated sludge process[J]. Chemosphere, 2020, 248: 126012. doi: 10.1016/j.chemosphere.2020.126012 [12] IC L, REYES F. Clarifying the roles of kinetics and diffusion in activated sludge filamentous bulking[J]. Biotechnology and Bioengineering, 2008, 101(2): 327 − 336. doi: 10.1002/bit.21886 [13] MARTINS A M P, HEIJNEN J J, LOOSDRECHT M. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions[J]. Water Research, 2003, 37(11): 2555 − 2570. doi: 10.1016/S0043-1354(03)00070-8 [14] 高春娣, 张娜, 彭永臻, 等. 低温下丝状菌膨胀污泥的微生物多样性[J]. 环境科学, 2020, 41(7): 396 − 406. [15] 王中玮, 彭永臻, 王淑莹, 等. 不同运行方式下低溶解氧污泥微膨胀的可行性研究[J]. 环境科学, 2011, 32(8): 173 − 178. [16] 彭赵旭, 彭永臻, 桂丽娟, 等. 低溶解氧丝状菌污泥微膨胀在SBR中的可行性[J]. 化工学报, 2010, 61(6): 200 − 1539. [17] 彭赵旭, 彭永臻, 左金龙, 等. 污泥微膨胀状态下短程硝化的实现[J]. 环境科学, 2009, 30(8): 127 − 131. doi: 10.3321/j.issn:0250-3301.2009.08.022 [18] EIKELBOOM D, GEURKINK B. Filamentous micro-organisms observed in industrial activated sludge plants[J]. Water Science and Technology, 2002, 46(1/2): 535 − 542. [19] STROM P F, JENKINS D. Identification and significance of filamentous microorganisms in activated sludge[J]. Water Pollution Control Federation. 1984, 56(5): 449-459. [20] CHUDOBA J, GRAU P, OTTOVA V. Control of activated-sludge filamentous bulking II, selection of microorganisms by means of a selector[J]. Water Research. 1973, 7(10): 1389-1398. [21] 彭赵旭. 低溶解氧丝状菌污泥微膨胀的控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. [22] STEVEN C C, ROBERT L. Growth and control of filamentous microbes in activated sludge: an integrated hypothesis[J]. Water Research. 1985, 19(4): 471-479. [23] CHAO L, WWEIHUA H, DANDAN L, et al. The anaerobic and starving treatment eliminates filamentous bulking and recovers biocathode biocatalytic activity with residual organic loading in microbial electrochemical system. [J]. Chemical Engineering Journal. 2021: 127072. [24] CGGN A S, KARAHAN O, ORHON D. Effect of feeding pattern on biochemical storage by activated sludge under anoxic conditions[J]. Water Research. 2007, 41(4): 924-934. [25] KAPPELER J, GUJER W. Development of a mathematical model for “aerobic bulking”[J]. Water Research. 1994, 28(2): 303-310. [26] MARTINS A M, PAGILLA K, HEIJNEN J, et al. Filamentous bulking sludge-a critical review[J]. Water Research, 2004, 38(4): 793 − 817. doi: 10.1016/j.watres.2003.11.005 [27] MARTIN W, SCHAUER M. ‘Candidatus aquirestis calciphila' and 'candidatus haliscomenobacter calcifugiens', filamentous, planktonic bacteria inhabiting natural lakes. [J]. International Journal of Systematic and Evolutionary Microbiology. 2007, 57(5): 936-940. [28] 高春娣, 彭永臻, 王淑莹, 等. 氮缺乏引起的非丝状菌活性污泥膨胀[J]. 环境科学, 2001(6): 61 − 65. doi: 10.3321/j.issn:0250-3301.2001.06.013 [29] 田园. SBR反应器中氮和磷含量对污泥膨胀现象影响研究[D]. 长春: 吉林建筑大学, 2013. [30] 杨雄, 彭永臻, 郭建华, 等. 氮/磷缺乏对污泥沉降性能及丝状菌生长的影响[J]. 化工学报, 2014, 65(3): 284 − 292. doi: 10.3969/j.issn.0438-1157.2014.03.038 [31] 陈滢, 彭永臻, 刘敏, 等. 营养物质对污泥沉降性能的影响及污泥膨胀的控制[J]. 环境科学, 2004(6): 54 − 58. doi: 10.3321/j.issn:0250-3301.2004.06.011 [32] 杨庆, 丁峰, 王淑莹, 等. 缺氮和不同pH值对活性污泥膨胀的影响[J]. 环境污染治理技术与设备, 2006(4): 35 − 37. [33] 张安龙, 张雪, 王森, 等. 低pH值对活性污泥膨胀及废水处理效果的影响[J]. 纸和造纸, 2013, 32(10): 41 − 45. [34] KNOOP S, KUNST S. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella[J]. Water Science and Technology, 1998, 37(4): 27 − 35. [35] MOURA L L, DYRTE K L S, SANTIAGO E P, et al. Bassin . Strategies to re-establish stable granulation after filamentous outgrowth: Insights from lab-scale experiments[J]. Process Safety and Environmental Protection. 2018, 117(0): 606-615. [36] PALM J, JENKINS E, DAVID L, et al. Relationship between organic loading, dissolved oxygen concentration and sludge settleability in the completely-mixed activated sludge process[J]. Journal of Water Pollution Control Federation. 1980, 52(10): 2484-2506. [37] JENKINS D, RICHARD M G, DAIGGER G T, et al. Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems [M]. CRC Press: 2003. [38] SEKA M A, DEWIELE T V, VERSTRAETE W. Full-scale evaluation of a multi-component additive for efficient control of activated sludge filamentous bulking[J]. Environmental Technology. 2002, 23(1): 67-72. [39] EIKELBOOM D. H, GROVENSTEIN J. Control of bulkingin a full scale plant by addition of talc(PE 8418)[J]. Water Science and Technology, 1998, 37(45): 297 − 301. [40] 李鹏, 周利, 赵永柱, 等. 药剂法在控制丝状菌污泥膨胀中的应用[J]. 工业水处理, 2008(7): 4 − 5. doi: 10.3969/j.issn.1005-829X.2008.07.002 [41] MATSCHET N F. Control of bulking sludgepractical experiences in Austria[J]. Water Science and Technology, 1982, 1(14): 311. [42] JENKINS D, MICHAEL, GLEN T, et al. Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems [M]. CRC Press: 2004. [43] NILSSON, FILIN, MARINETTE H, et al. Application of ozone in full-scale to reduce filamentous bulking sludge at resundsverket WWTP. [J]. Ozone: Science & Engineering. 2014, 36(3): 238-243. [44] 吕永涛, 朱传首, 张旭阳, 等. 臭氧投量对SBR系统污泥沉降性能及脱氮除磷的影响[J]. 环境科学. 2021, 42(7): 312-316. [45] 李清位, 段付岗. SBR工艺抑制活性污泥膨胀的技术优势和防范措施[J]. 煤炭加工与综合利用, 2014(12): 43 − 47. doi: 10.3969/j.issn.1005-8397.2014.12.013 [46] 张永吉. 控制完全混合式曝气池污泥膨胀的生物选择器[J]. 中国给水排水, 1990(2): 39 − 42. [47] LINNE L, STEPHEN R, STEVEN C, et al. Operational variables affecting performance of the selector-complete mix activated sludge process[J]. Water Pollution Control Federation. 1987, 59(7): 716-721. [48] GABB D M D, STILL D A, EKAMA G, et al. The selector effect on filamentous bulking in long sludge age activated sludge systems[J]. Water Science and Technology, 1991, 23(4-6). [49] 吴凡松, 彭永臻, 王维斌. 生物选择器与除磷脱氮[J]. 给水排水, 2003(12): 32 − 34. doi: 10.3969/j.issn.1002-8471.2003.12.011 [50] DAVID J, MICHAEL G, GLEN T. Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems [M]. CRC Press: 2004. [51] 彭赵旭, 彭澄瑶, 何争光, 等. 污泥龄对低氧丝状菌活性污泥微膨胀系统的影响[J]. 环境科学学报, 2015, 35(1): 245 − 251. [52] 简耀先. SBR工艺活性污泥膨胀原因分析及调控措施[J]. 中氮肥, 2021(1): 77 − 80. doi: 10.3969/j.issn.1004-9932.2021.01.022 [53] PALM J, JENKINS, DAVID L, et al. Relationship between organic loading, dissolved oxygen concentration and sludge settleability in the completely-mixed activated sludge process[J]. Journal of Water Pollution Control Federation. 1980, 52(10): 2484-2506. [54] 陆秋萍, 李海勤, 刘华, 等. 污泥膨胀的原因分析及调整实例[J]. 工业用水与废水, 2019, 50(6): 43 − 46. [55] 李军, 商卫纯, 蔡娟, 等. 不同曝气强度下活性污泥中松散束缚型胞外聚合物组分含量及其对污泥沉降性能的影响[J]. 环境污染与防治, 2014, 36(4): 6 − 10. doi: 10.3969/j.issn.1001-3865.2014.04.002 [56] 于德洋, 程显好, 罗毅, 等. 大型真菌重金属富集的研究进展[J]. 中国食用菌, 2011, 30(1): 10 − 13. doi: 10.3969/j.issn.1003-8310.2011.01.003 [57] ZAIDI N S, SOHILI J, HUSSEIN S. Enhanced biomass properties in sludge bulking: impact of static magnetic field[C]// IOP Conference Series: Materials Science and Engineering. 2020. [58] ZAIDI N S, MUDA K, SOHAILI J, et al. Enhancement of nitrification efficiency during sludge bulking by magnetic field under long sludge retention time[J]. 3 Biotech. 2020, 10(9): 408. [59] 刘波, 丁新春, 张建朱, 等. 超声强制作用下的污泥膨胀控制研究[J]. 安全与环境学报, 2020, 20(3): 283 − 287. [60] AGNIESZKA P S, EDYTAL F. The Influence of temperature on the effectiveness of filamentous bacteria removal from activated sludge by rotifers[J]. Water Environment Research. 2012, 84(8): 619-625. [61] FILKOWSKA E. PAJDAK-STOS A. The role of Lecane rotifers in activated sludge bulking control[J]. Water Research. 2008, 42(10): 2483-2490.