-
硝化反应是自然界氮循环的关键环节,在氮生物地球化学循环中发挥着重要作用。硝化作用是氨氮(NH4+)首先被氨氧化细菌(AOB)或古菌(AOA)氧化为亚硝态氮(NO2−),进而被亚硝酸盐氧化菌(NOB)氧化为硝态氮(NO3−)的生化反应过程。在过去100多年中,众多学者研究了氨氧化反应过程及AOB菌群的生理特性,而亚硝酸盐氧化及NOB菌群的生理特性并未引起广泛重视。这主要是由于,在传统生物硝化过程中,氨氧化反应是硝化过程的限速步骤,相对于氨氧化反应,亚硝酸盐氧化反应较容易发生[1]。但短程生物脱氮技术的发现,通过不匹配AOB和NOB两类菌属的生理特性差异,选择性抑制NOB菌属的活性,可作为短程生物脱氮的有效途径,因此,众多学者开始关注NOB的菌群特性研究。
NOB属于化能自养型细菌,为专性好氧菌,可利用无机碳化合物,如CO2、CO32−、HCO3−等作为碳源,利用NO2−作为氮源,在NO2−氧化过程中以O2作为最终电子受体,以获得生长所需要的能量。NOB氧化NO2−产生的能量仅有2%~11%用于细胞增殖,因此,NOB能量利用率不高,生长较缓慢,导致其在自然生态系统中的比例较低(4%~5%)[2]。目前,已鉴定出来的NOB菌属主要包括硝化杆菌属(Nitrobacter)、硝化螺菌属(Nitrospira)、硝化球菌属(Nitrococuus)、硝化刺菌属(Nitrospina)、Nitrotoga属、Candidatus Nitromaritima属和Nitrolancea属7类菌属[3]。其中,硝化杆菌属(Nitrobacter)和硝化螺菌属(Nitrospira)是NOB的最典型代表菌属,广泛分布于土壤、淡水、海水及城市污水处理厂活性污泥中。
近10年来,高通量测序技术被广泛用于自然生态系统中微生物群落特性的研究中,能够系统深入地解析、刻画微生物组,通过核酸序列的同源性和差异反映群落的多样性、组成谱和功能谱,并对各种微生物组进行大规模并行比较、关联分析,从而有助于深入探讨它们对于整个生态系统的重要作用,更全面地研究“微生物组-环境/宿主”之间的相互作用机制。
本研究针对富集NOB菌属活性污泥系统,通过SEM技术探究了NOB菌属的形态特征,进而采用宏基因组学技术研究了生化系统内活性污泥的微生物组成及优势物种关联网络关系,探究了NOB菌属的生理生化、代谢活性和行为功能等多方面特性,为自然生态系统氮循环、短程生物脱氮技术提供微生物学理论支持。
基于宏基因组学的亚硝酸盐氧化菌属的新陈代谢功能分析
Metabolic function analysis of nitrite oxidizing bacteria based on metagenomics
-
摘要: 为探究亚硝酸盐氧化菌(NOB)的菌群结构及其新陈代谢功能特性,在富集NOB菌属的基础上,基于宏基因组学技术探究了富集活性污泥系统内NOB微生物种群结构、相互作用关系、氮转化相关功能基因及蛋白质功能特性。结果表明,Nitrobacter为富集后活性污泥系统中最优势菌属,相对丰度为37.8%。微生物菌种之间表现出各种错综复杂的关联特征,其中,维氏硝酸杆菌种(Nitrobacter winogradskyi)和汉氏硝化菌种(Nitrobacter hamburgensis)呈现出显著正相关性。此外,新陈代谢是系统内各类菌属中主导的生命活动过程,亚硝酸盐氧化还原酶Nxr为生化系统内氮代谢的关键酶(占比13.5%)。本研究结果可为NOB菌属的富集培养提供参考。Abstract: In order to explore the community structure and metabolic function of nitrite oxidizing bacteria (NOB) in an activated sludge system, the microbial population structure, interaction relationship, nitrogen conversion related functional factors and protein functional characteristics in the NOB enriched activated sludge system were explored based on metagenomics technology. Results showed that Nitrobacter was the most abundant bacteria in the activated sludge system after enrichment, with relative abundance of 37.8%. Among them, Nitrobacter winogradskyi and Nitrobacter hamburgensis showed a strong positive correlation. In addition, metabolism was the most dominant process of all kinds of bacteria in the system, and Nitrite oxidoreductase Nxr was the key enzyme of nitrogen metabolism in biochemical system (accounting for 13.5%). The results of this study can provide a reference for the enrichment culture of NOB bacteria.
-
表 1 氮代谢过程相关酶的种类及丰度
Table 1. Types and abundances of enzymes related to nitrogen metabolism process
反应过程 相对丰度/% 相关酶 反硝化过程 14.3 nirK、nosZ、narI、norB、nirS、napA、nrfA、norC 硝化过程 13.5 nxrA、nxrB 异化硝酸盐还原过程 6.6 nirB、nirD、napB 同化硝酸盐还原过程 9.3 NRT、nasA、nirA、NR、narB -
[1] TAYLOR A E, MYROLD D D, BOTTOMLEY P J. Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils[J]. Soil Biology and Biochemistry, 2019, 136: 107523. doi: 10.1016/j.soilbio.2019.107523 [2] ZHANG L, SHEN Z, FANG W, et al. Composition of bacterial communities in municipal wastewater treatment plant[J]. Science of the Total Environment, 2019, 689: 1181-1191. doi: 10.1016/j.scitotenv.2019.06.432 [3] DAIMS H, S L, WAGNER M. A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria[J]. Trends in Microbiology, 2016: 699-712. [4] 国家环境保护局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [5] APHA. Standard methods for the examination of water and wastewater[J]. 20th ed. Washington, D. C. :American Public Health Association, 1998: 80-90. [6] HUSON D H, MITRA S, RUSCHEWEYH H J, et al. Integrative analysis of environmental sequences using MEGAN4[J]. Genome Research, 2011, 21(9): 1552-1560. doi: 10.1101/gr.120618.111 [7] HUSOM D H, AUCH A F, QI J, et al. MEGAN analysis of metagenomics data[J]. Genome Research, 2007, 17(3): 377-386. doi: 10.1101/gr.5969107 [8] 于雪. 温度、pH值和游离亚硝酸对亚硝酸盐氧化菌活性动力学及微生物种群结构影响研究[D]. 兰州: 兰州交通大学, 2019. [9] ZHANG T, SHAO M, YE L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14sewage treatment plants[J]. The ISME Journal, 2011, 6(6): 1137-1147. [10] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684. doi: 10.1016/j.biortech.2017.10.063 [11] 杨浩, 张国珍, 杨晓妮, 等. 典型集雨人饮地区窖水微生物群落多样性及差异解析[J]. 环境科学, 2017, 38(11): 4733-4746. [12] 2] 宁高阳, 牛永健, 李维维, 等. C/N对SBR生物脱氮硝化过程微生物结构的动态影响[J]. 中国环境科学, 2020, 40(05): 2053-2061. doi: 10.3969/j.issn.1000-6923.2020.05.023 [13] SUN H W, SHI W Y, CAI CH J, et al. Responses of microbial structures, functions, metabolic pathways and community interactions to different C/N ratios in aerobic nitrification[J]. Bioresource technology, 2020: 311. [14] PENG Y, ZHU G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology, 2006, 73(1): 15-26. doi: 10.1007/s00253-006-0534-z [15] CAO J S, ZHANG T, WU Y, et al. Correlations of nitrogen removal and core functional genera in full-scale wastewater treatment plants: Influences of different treatment processes and influent characteristics[J]. Bioresource Technology, 2020, 297: 122455. doi: 10.1016/j.biortech.2019.122455 [16] 董怡君, 王淑莹, 汪传新, 等. 亚硝酸盐氧化菌(NOB)的富集培养与其污泥特性分析[J]. 中国环境科学, 2013, 33(11): 1978-1983. [17] 包鹏, 王淑莹, 马斌, 等. 不同溶解氧间歇曝气对亚硝酸盐氧化菌的影响[J]. 中国环境科学, 2016, 36(9): 2696-2702. doi: 10.3969/j.issn.1000-6923.2016.09.024 [18] VIJAYAN A, JAVADRADHAN R, PILLAI D, et al. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity[J]. Journal of Basic Microbiology, 2021(2). [19] 姚倩, 彭党聪, 赵俏迪, 等. 活性污泥中硝化螺菌(Nitrospira)的富集及其动力学参数[J]. 环境科学, 2017, 38(12): 5201-5207. [20] FAUST K, RAES J. Microbial interactions: from networks to models[J]. Nature Reviews Microbiology, 2012, 10(8): 538-550. doi: 10.1038/nrmicro2832 [21] JU F, ZHANG T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant[J]. Isme Journal, 2015, 9(3): 683. doi: 10.1038/ismej.2014.162 [22] TESKE A, ALM E, REGAN J M, et al. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria[J]. Journal of Bacteriology, 1994, 176(21): 6623. doi: 10.1128/jb.176.21.6623-6630.1994 [23] MORIYA Y, ITOH M, OKUDA S, et al. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Res, 2007, 35: W182-W185. doi: 10.1093/nar/gkm321 [24] PEATER M, MAIXNER F, BERRY D, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira[J]. Environmental Microbiology, 2014, 16(10): 3055-3071. doi: 10.1111/1462-2920.12300 [25] LAI X S, ZHAO Y Q, PAN F X, et al. Enhanced optimal removal of nitrogen and organics from intermittently aerated vertical flow constructed wetlands: Relative COD/N ratios and microbial responses[J]. Chemosphere, 2020: 244. [26] YIN Y N, YANG CH, GU J, et al. Roles of nxrA-like oxidizers and nirS-like reducers in nitrite conversion during swine manure composting[J]. Bioresource Technology, 2019, 297: 122426.