-
硝酸盐和高氯酸盐是地下水中常见的共存污染物。农业氮肥的大量施用是地下水硝酸盐污染的最大来源[1]。在美国,约有22%的农业地下水硝酸盐浓度超过饮用水标准[2];在欧洲,有1/3的地下水硝酸盐超过了饮用水标准,硝酸盐达到了100~150 mg·L−1[3];在中国,有61.2%的地下水井存在着硝酸盐严重超标的问题[4]。当长期饮用硝酸盐超标的地下水时,人体患高铁血红蛋白症和癌症的几率会增加[5]。地下水中高氯酸盐主要来源于火箭助推剂、烟花、染料和油漆等工业产品的生产和加工过程[6-7]。有研究表明,智利阿塔卡马沙漠中地表水中的高氯酸盐质量浓度为744~1 480 μg·L−1[8]。有研究[9]表明,由于将含有高氯酸盐的制造业废水排到地下水中,导致位于美国加利福尼亚州东部的萨克拉门地下水高氯酸盐含量达到了8 mg·L−1。KOSAKA等[10]在2007年对日本Usui河和Tone河调研发现,受污域河水中高氯酸盐质量浓度为0.34~2.38 mg·L−1。据调查,我国部分水体存在高浓度高氯酸盐污染状况,如湖南省衡阳市某地表水高氯酸盐含量高达6.8~54.4 mg·L−1[11]。由于高氯酸根离子在电荷和离子半径上都与碘相似,因此,可能会破坏甲状腺中碘的吸收,从而可能影响甲状腺功能,引起甲状腺疾病[12-14],严重威胁着人类的健康。
目前处理水体硝酸盐和高氯酸盐复合污染的方法主要包括离子交换、膜分离、化学还原和生物法[15-16]。离子交换和膜分离工艺虽然能够去除水中的硝酸盐和高氯酸盐,但只是将污染物浓缩转移,并没有将污染物无害转化,且操作成本较高;对于化学还原法,多采用贵金属催化剂,价格昂贵且催化剂易失活;生物还原工艺能够实现硝酸盐和高氯酸盐的高效去除,易于推广应用,故逐渐成为本领域的研究热点[17-18]。根据所需电子供体的不同,生物还原法分为异养还原和自养还原法,对于异养还原过程,常用的有机碳源包括葡萄糖、甲醇、乙酸盐等[19-20]。采用乙酸盐作为电子供体,还原去除硝酸盐和高氯酸盐的反应分别如式(1)和式(2)所示。
需要指出的是,虽然异养生物还原反应速率快,但其反应过程会产生碱度,造成出水pH的升高。此外,碳源投加不易控制,投加过少则处理不彻底,投加过多则残余水中容易造成二次污染。生物自养过程利用无机碳作为电子供体,避免了有机源的投加,近年来受到研究人员的关注。其中,微生物利用单质硫作为电子供体,还原硝酸盐和高氯酸盐的反应如式(3)和式(4)所示。对于硫自养生物还原过程来说,虽然避免了有机碳源投加带来的隐患,但反应过程中产生副产物硫酸盐,同时消耗水体碱度,造成出水pH降低。
基于上述研究背景,为了克服异养和自养还原各自的缺点,本研究建立了异养和硫自养协同作用的一体式生物反应器,其中有机碳源投加量低于理论值,这可有效避免水中有机物的二次污染;硫自养仅承担部分负荷,从而削弱硫酸盐的产生;同时平衡了2种反应过程碱度产生与消耗,稳定出水pH;考察了在不同HRT和不同碳源投加量条件下,混合营养生物工艺对废水中硝酸盐和高氯酸盐的去除效果,以期为该工艺在实际水处理工程中的应用提供参考。
混合营养生物反应器同步去除水中高氯酸盐和硝酸盐
Combined heterotrophic and sulfur-autotrophic bioreactor for synchronous removal of perchlorate and nitrate from aqueous solution
-
摘要: 针对水体硝酸盐和高氯酸盐复合污染,建立了异养和硫自养协同作用的混合营养型一体式生物反应器,采取异养投加不足量有机碳源、硫自养和异养共同承担负荷的策略,以解决异养有机物二次污染和硫自养法中副产物硫酸根过量的问题。考察了水力停留时间(HRT)和碳源投加量对高氯酸盐去除的影响。结果表明:当进水
$ {{\rm{N}}{{\rm{O}}^ -_3}} $ -N质量浓度为(20.21±0.23) mg·L−1、$ {\rm{Cl}}{{\rm{O}}_4}^ - $ 质量浓度为(20.12±0.12) mg·L−1、HRT由4 h降低到2、1和0.5 h时,反应器均能实现对硝酸盐(>96.2%)和高氯酸盐(>96.9%)的高效去除;在HRT为4 h和0.5 h时,出水硫酸根质量浓度分别为(273±10) mg·L−1和(129±3) mg·L−1,较长的HRT会导致硫歧化反应发生,从而使出水硫酸根浓度有所增加;当HRT为0.5 h时,混合营养条件下反应器出水硫酸根质量浓度比单独硫自养减少了63 mg·L−1,表明混合营养生物反应器能够有效减少硫酸根的产生;反应器出水不可吹除有机碳(nonpurgeable organic carbon,NPOC)小于2.68 mg·L−1,表明低碳源投加能够有效地避免有机物二次污染。Abstract: A combined heterotrophic and sulfur -autotrophic bioreactor was established to treat nitrate and perchlorate in water. The dosage of organic carbon source for heterotrophic was insufficient. Sulfur-autotrophic process was combined with heterotrophic process to avoid secondary pollution of organic matter and diminish excessive sulfate generation by Sulfur-autotrophic reaction. The effects of hydraulic retention time (HRT) and carbon source dosage on the treatment efficiency of perchlorate were investigated. The results shows that when the inffluent mass concentrations of nitrate and perchlorate were (20.21±0.23) mg·L−1 and (20.12±0.12) mg·L−1, nitrate (> 96.2%) and perchlorate (> 96.9%) can be efficiently removed when HRT was ranged from 4 h to 2 h, 1 h and 0.5 h. Under the combined heterotrophic and sulfur-autotrophic condition, the effluent mass concentrations of sulfate were (273±10) mg·L−1 and (129±3) mg·L−1 for HRT 4 h and 0.5 h, respectively. Long HRT could lead to the occurrence of sulfur disproportionation reaction and the increase of the sulfate concentrations in effluent. When HRT was 0.5 h, the sulfate mass concentrations in effluent for combined trophic process decreased by 63 mg·L−1 when compared with sulfur-autotrophic process, indicates that the combined process could effectively reduce the generation of sulfate. The NPOC (nonpurgeable organic carbon) of the reactor effluent was less than 2.68 mg·L−1, indicating that the addition of low carbon sources could effectively avoid secondary pollution of organic matter.-
Key words:
- nitrate /
- perchlorate /
- heterotrophic process /
- sulfur autotrophic process /
- sulfur disproportionation
-
图 2 驯化阶段
$ {\bf{Cl}}{{\bf{O}}^ -_4} $ 、$ {\bf{N}}{{\bf{O}}^ -_3} $ -N、$ {\bf{N}}{{\bf{O}}^ -_2} $ -N 和$ {\bf{S}}{{\bf{O}}^{2 - }_4}$ 质量浓度变化Figure 2. Variations of
$ {\rm{Cl}}{{\rm{O}}^ -_4} $ ,$ {\rm{N}}{{\rm{O}}^ -_3} $ -N,$ {\rm{N}}{{\rm{O}}^ - _2}$ -N and$ {\rm{S}}{{\rm{O}}^{2 - }_4}$ concentrations during acclimation process图 3 不同操作条件下进出水
$ {\bf{Cl}}{{\bf{O}}^ -_4} $ 、$ {\bf{N}}{{\bf{O}}^ -_3} $ -N和$ {\bf{N}}{{\bf{O}}^ -_2} $ -N质量浓度变化Figure 3. Variations of
$ {\rm{Cl}}{{\rm{O}}^ -_4} $ ,$ {\rm{N}}{{\rm{O}}^ -_3} $ -N and$ {\rm{N}}{{\rm{O}}^ -_2} $ -N concentrations in influent and effluent under different operate conditions表 1 反应器实验运行方案
Table 1. Experimental operation scheme of reactor
运行阶段 运行时段/d 工艺条件 HRT/h 进水CH3COO−/
(mg·L−1)Ⅰ 1~10 混合营养 4 60 Ⅱ 11~20 混合营养 2 60 Ⅲ 21~30 混合营养 1 60 Ⅳ 31~41 混合营养 0.5 60 Ⅴ 42~51 单独硫自养 0.5 0 -
[1] LUMIA D S, LINSEY K S, BARBER N L. Estimated use of water in the United States in 2000[M]. US Department of the Interior & US Geological Survey, 2005. [2] WARD M H, DEKOK T M, LEVALLOIS P, et al. Workgroup report: Drinking-water nitrate and health-recent findings and research needs[J]. Environmental Health Perspectives, 2005, 113(11): 1607-1614. doi: 10.1289/ehp.8043 [3] United Nations. Economic Commission for Europe. Europe’s Environment: The Third Assessment: Summary[M]. Office for Official Publications of the European Communities, 2003. [4] LI P Y, TIAN R, XUE C Y, et al. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China[J]. Environmental Science & Pollution Research, 2017, 24(15): 13224-13234. [5] CLARK J J J. Toxicology of Perchlorate[M]. Perchlorate in the Environment. Boston, MA; Springer US, 2000: 15-29. [6] HE L, YANG Q, ZHONG Y, et al. Electro-assisted autohydrogenotrophic reduction of perchlorate and microbial community in a dual-chamber biofilm-electrode reactor[J]. Chemosphere, 2021, 264: 128548. doi: 10.1016/j.chemosphere.2020.128548 [7] MOTZER W E. Perchlorate: Problems, detection, and solutions[J]. Environmental Forensics, 2001, 2(4): 301-311. doi: 10.1006/enfo.2001.0059 [8] CALDERóN R, PALMA P, PARKER D, et al. Perchlorate levels in soil and waters from the Atacama desert[J]. Archives of Environmental Contamination & Toxicology, 2014, 66(2): 155-161. [9] 张可佳, 高乃云, 隋铭皓, 等. 饮用水中高氯酸盐污染现状与去除技术的综述[J]. 四川环境, 2008, 27(1): 91-95. doi: 10.3969/j.issn.1001-3644.2008.01.021 [10] KOSAKA K, ASAMI M, MATSUOKA Y, et al. Occurrence of perchlorate in drinking water sources of metropolitan area in Japan[J]. Water Research, 2007, 41(15): 3474-3482. doi: 10.1016/j.watres.2007.05.011 [11] WU Q, TAO Z, SUN H, et al. Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 543-550. doi: 10.1007/s00244-010-9485-6 [12] QIAN W B, KAI C A, SH A, et al. Spontaneous assembly of microbial extracellular polymeric substances into microcapsules involved in trapping and immobilizing degradation-resistant oxoanions: ScienceDirect[J]. Science of the Total Environment, 2020. [13] EGGERS E, TERLOUW T. Biological denitrification in a fluidized bed with sand as carrier material[J]. Water Research, 1979, 13(11): 1077-1090. doi: 10.1016/0043-1354(79)90072-1 [14] WOLFF J. Perchlorate and the thyroid gland[J]. Pharmacological Reviews, 1998, 50(1): 89-105. [15] 谢婷. 基于厌氧甲烷氧化的生物反硝化和高氯酸盐还原机制及微生物群落研究[D]. 长沙: 湖南大学, 2019. [16] BREYTUS A, HASSON D, SEMIAT R, et al. Removal of nitrate in semi and fully continuous-flow Donnan dialysis systems[J]. Separation and Purification Technology, 2020, 250: 117249. [17] 吴芳磊. 基于硫自养反硝化的深度除磷脱氮研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [18] LI K, GUO J B, LI H B, et al. A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy[J]. Bioresource Technology, 2019, 279: 297-306. doi: 10.1016/j.biortech.2019.01.111 [19] 杨垒. 高效异养硝化细菌的脱氮特性及其处理高氨氮废水研究[D]. 西安: 西安建筑科技大学, 2016. [20] SAHINKAYA E, KILIC A, CALIMLIOGLU B, et al. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process[J]. Journal of Hazardous Materials, 2013, 262(15): 234-239. [21] LV P L, SHI L D, DONG Q Y, et al. How nitrate affects perchlorate reduction in a methane-based biofilm batch reactor[J]. Water Research, 2020, 171(15): 115397. [22] UCAR D, COKGOR E U, SAHINKAYA E, et al. Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system[J]. International Biodeterioration & Biodegradation, 2017, 116: 83-90. [23] WAN D J, LI Q, LIU Y D, et al. Simultaneous reduction of perchlorate and nitrate in a combined heterotrophic-sulfur-autotrophic system: Secondary pollution control, pH balance and microbial community analysis[J]. Water Research, 2019, 165(15): 115004. [24] WAN D J, NIU Z H, ZHOU J, et al. Influence of electron donors on perchlorate reduction and microbial community structure[J]. Environmental Engineering Science, 2018, 35(11): 1255-1262. doi: 10.1089/ees.2018.0072 [25] WAN D J, LIU Y D, WANG Y Y, et al. Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure[J]. Water Research, 2017, 108: 280-292. [26] ZHU Y, WU M, GAO N, et al. Impacts of nitrate and electron donor on perchlorate reduction and microbial community composition in a biologically activated carbon reactor[J]. Chemosphere, 2016, 165: 134-143. doi: 10.1016/j.chemosphere.2016.08.078 [27] WAN D J, LIU Y D, NIU Z H, et al. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing[J]. Biodegradation, 2016, 27(1): 47-57. doi: 10.1007/s10532-015-9754-1 [28] 宋振赫. 一体式硫酸盐和亚硝酸盐同步去除工艺研究[D]. 大连: 大连海事大学, 2020. [29] JU X, FIELD J A, SIERRA-ALVAREZ R, et al. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur[J]. Biotechnology & Bioengineering, 2010, 96(6): 1073-1082. [30] WAN D J, LIU Y D, WANG Y Y, et al. Sulfur disproportionation tendencies in a sulfur packed bed reactor for perchlorate bio-autotrophic reduction at different temperatures and spatial distribution of microbial communities[J]. Chemosphere, 2018, 215: 40-49.