-
近年来,有机固废(作物秸秆、畜禽粪便、生活垃圾和城市污泥等农林和城市生活废弃物)的产生量迅速增长。将农林废弃物和生活废弃物进行处理,使之实现无害化、资源化利用的思路符合可持续和循环利用的发展原则。热解、气化和厌氧发酵等有机生物质处理技术可实现有机固废的高效处理,为发展低碳经济和替换清洁能源提供出路[1-2]。现有处理工艺中,有机固废的厌氧发酵处理与填埋、焚烧等处理工艺相比,具有集中高效、环境友好的优点。厌氧发酵产物的合成制备和加工应用具有大规模发展的潜力,其市场需求也在大幅增长。
本文总结了有机固废厌氧发酵技术的发展现状,分析了不同发酵代谢类型的转化途径,针对不同发酵目标产物的制备过程,梳理了各类产物的高值应用前景及制备中的影响因素,并提出有机固废厌氧发酵评价参数应由产物总体产量转向产物目标组分,以期实现有机固废的利用朝着高效资源化转化和发酵脂肪酸产品高值工业化生产的方向发展。
有机固废厌氧发酵产物的转化制备与应用进展
Review on typical products preparation and application in organic waste anaerobic fermentation treatment
-
摘要: 有机固废的高效转化和循环利用对解决全球环境污染、能源短缺和资源缺乏等共性问题具有积极作用。采用厌氧发酵技术高效处理有机固废,可合成制备出不同酸化产物,并促进酸化产品的加工应用。在文献及工程调研的基础上,梳理了有机固废厌氧酸化发酵的不同代谢途径,分析了不同酸化产物的经济性及工程化应用现状。以发酵产物乙醇、乳酸、丙酸和丁酸等为代表,分析了酸化产品的制备及应用状况。采用系列宏观与微观的调控手段,可促进酸化发酵目标产物的代谢转化,并实现有机固废酸化发酵脂肪酸类产物的高效合成,从而为发酵脂肪酸类产品的制备生产和加工应用提供参考。Abstract: The conversion and recycling of organic waste play a positive role in addressing environment pollution, global energy and resource shortage. Using anaerobic fermentation technology to treat organic solid waste efficiently can promote the synthesis and preparation of different acidification products and the processing and application of typical products. Based on literature review and site survey, different metabolic pathways of anaerobic acidification fermentation were reviewed, and the economic efficiency and engineering application status of different acidification products were evaluated. The preparation and application condition of products of different fermentation types, e.g. ethanol, lactic acid, propionic acid and butyric acid, were introduced. The adoption of oriented micro and macro strategies can promote the metabolic synthesis of target fermentation products and efficient transformation of fatty acid products in acidification fermentation of organic solid waste, which can lay a theoretical foundation and provide engineering guidance for the preparation, production and processing application of fermented fatty acid products.
-
表 1 典型农林和城市有机固废的主要成分
Table 1. Composition of typical organic wastes from agriculture, livestock and municipal management
表 2 发酵产物生产规模及应用
Table 2. Scale and application of fermentation products
物质化学式 羧酸产品 生产规模 主要应用 C2H4O2 乙酸 产业化 染料、颜料、涂层、黏结剂、聚酯纤维等 C2H6O 乙醇 产业化 食品工业、燃料等 C3H6O2 丙酸 设计阶段 食品添加剂、有机溶剂、增味剂、除草剂等 C3H6O3 乳酸 产业化 生物降解聚合物、食品添加剂、缓冲溶液等 C4H8O2 丁酸 设计阶段 食品增味剂、化工品、药品加工等 表 3 乙醇型发酵产量现状
Table 3. Current situation of ethanol fermentation yield
底物 反应器类型 pH 水力停留时间/h 有机负荷/
(g·(L·d)−1)乙醇最大产量/
(g·L−1)文献 人工配制糖蜜废水 CSTR 6.2~6.9 8 18~24 1.3~1.4 [63] 糖蜜废水 CSTR 4.3~4.5 3.6~4.6 46~107 1.6 [45] 糖蜜废水 CSTR 4.8~5.2 8 6 0.6 [73] 果蔬垃圾 CSTR 4.0~4.5 240 20 9.8 [44] 果蔬垃圾 CSTR 4.0 120 7 16.5 [74] 果蔬垃圾 CSTR 4.0 72 18 6.7 [75] 糖蜜废水 UASB 无 8 12 0.8 [76] 果蔬垃圾 CSTR 4.0 72 14 3.5 [65] 葡萄糖 CSTR 5.0 96 5 3.3 [46] 食物残渣 CSTR 无 无 无 27.6 [77] 注:CSTR(continuous stirred-tank reactor)即连续流搅拌槽式反应器;UASB(upflow anaerobic sludge blanket)即上流式厌氧污泥床反应。有机负荷单位以COD计。 表 4 不同有机底物乳酸生产的现状
Table 4. Current situation of lactic acid production from different organic substrates
基质 方法 产物 氮源 pH 温度/
℃微生物 浓度/
(g·L−1)产量/
(g·g−1)产率/
(g·(L·h)−1)文献 葡萄糖 补料分批发酵 D-乳酸 花生饼粉 9.0 42 Sporolactobacillus sp. CASD 226.00 0.840 4.40 [113] 葡萄糖 补料分批发酵 L-乳酸 花生饼粉 10.0 45 Bacillus sp. WL-S20 225.00 0.993 1.04 [114] 木糖 补料分批发酵 L-乳酸 酵母膏 6.0 50 Bacilus coagulans C106 215.70 0.950 4.00 [115] 预处理玉米芯 同步糖化发酵 L-乳酸 酵母膏 6.0 50 Bacillus coagulans LA204 122.99 0.77 1.37 [116] 甜高粱甘蔗渣 同步糖化发酵 L-乳酸 玉米浆干粉 5.2~6.2 50 Bacillus coagulans LA1507 111.00 0.437 1.59 [117] 玉米秸 同步糖化发酵 L-乳酸 酵母膏 6.0 37 Lactobacillus pentosu 92.30 0.660 1.92 [118] 厨余垃圾 批式发酵 乳酸和沼气 − 6.0 35 Streptococcus sp. 35.00 0.330 3.38 [119] 厨余垃圾 批式发酵 乳酸 酵母膏 6.0 35 Streptococcus sp. 66.50 0.810 2.16 [120] 废纸和污泥 批式发酵 乳酸 − 5.5 37 Lactobacillus rhamnosus ATCC7469 73.00 0.970 2.90 [121] 咖啡液 批式发酵 L-乳酸 酵母膏 6.0 52 Bacillus coagulans 45.30 0.770 4.40 [122] 小麦麸 批式发酵 乳酸 6.3 30 Lactobacillus pentosus DSM20314 18.60 0.730 0.30 [122] 马铃薯粉 批式发酵 L-乳酸 酵母膏 7.0 60 Geobacillus stearothermophilus DSM494 36.62 0.660 1.80 [123] 木薯废弃 批式发酵 D-乳酸 酵母膏 6.5 37 Lactobacillus delbrueckiidelbrueckii NBRC 3202 16.15 0.500 0.90 [124] 表 5 提高脂肪酸产量的最优条件
Table 5. Optimal conditions for promoting VFAs production
-
[1] 中国政府网. 中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见[EB/OL]. [2021-01-04]. http://www.moa.gov.cn/hd/zbft_news/xczxnyncxdh/xgxw/202102/t20210222_6361921.htm. [2] 中国政府网. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2021-03-12]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. [3] ZHENG M, LI L, LI X, et al. The effects of alkaline pretreatment parameters on anaerobic biogasification of corn stover[J]. Energy Sources, 2010, 32(17/18/19/20): 1918-1925. [4] ZHENG X, LIU Y, HUANG J, et al. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110457. doi: 10.1016/j.ecoenv.2020.110457 [5] WANG L, SHEN F, YUAN H, et al. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies[J]. Waste Management, 2014, 34(12): 2627-2633. doi: 10.1016/j.wasman.2014.08.005 [6] CHEN Y, LUO J, YAN Y, et al. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells[J]. Applied Energy, 2013, 102: 1197-1204. doi: 10.1016/j.apenergy.2012.06.056 [7] 李伟, 蔺树生, 谭豫之, 等. 作物秸秆综合利用的创新技术[J]. 农业工程学报, 2000, 16(1): 14-17. doi: 10.3321/j.issn:1002-6819.2000.01.008 [8] MA X, HU J, WANG X, et al. An integrated strategy for the utilization of rice straw: Production of plant growth promoter followed by ethanol fermentation[J]. Process Safety and Environmental Protection, 2019, 129: 1-7. doi: 10.1016/j.psep.2019.06.004 [9] KIM N J, PARK G W, KANG J, et al. Volatile fatty acid production from lignocellulosic biomass by lime pretreatment and its applications to industrial biotechnology[J]. Biotechnology & Bioprocess Engineering, 2013, 18(6): 1163-1168. [10] PALMQVIST E, HAHN-HAGERDAL B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification[J]. Bioresource Technology, 2000, 74(1): 17-24. doi: 10.1016/S0960-8524(99)00160-1 [11] QIANG H, WANG F, DING J, et al. Co-digestion of swine manure and corn stalks with biochar as an effective promoter: An optimization study using response surface methodology[J]. Fuel, 2020, 268: 117395. doi: 10.1016/j.fuel.2020.117395 [12] WANG S, SUN X, YUAN Q. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review[J]. Bioresource Technology, 2018, 258: 302-309. doi: 10.1016/j.biortech.2018.03.064 [13] XING B S, HAN Y, WANG X C, et al. Persistent action of cow rumen microorganisms in enhancing biodegradation of wheat straw by rumen fermentation[J]. Science of the Total Environment, 2020, 715: 136529. doi: 10.1016/j.scitotenv.2020.136529 [14] WU J, HU Y Y, WANG S F, et al. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis[J]. Waste Management, 2017, 62: 69-75. doi: 10.1016/j.wasman.2017.02.022 [15] 张田, 卜美东, 耿维. 中国畜禽粪便污染现状及产沼气潜力[J]. 生态学杂志, 2012, 31(5): 1241-1249. [16] PARANHOS A G D O, ADARME O F H, BARRETO G F, et al. Methane production by co-digestion of poultry manure and lignocellulosic biomass: Kinetic and energy assessment[J]. Bioresource Technology, 2020, 300: 122588. doi: 10.1016/j.biortech.2019.122588 [17] LI R, DUAN N, ZHANG Y, et al. Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement[J]. Waste Management, 2017, 70: 247-254. doi: 10.1016/j.wasman.2017.09.016 [18] BONG C P C, LIM L Y, LEE C T, et al. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion: A review[J]. Journal of Cleaner Production, 2018, 172: 1545-1558. doi: 10.1016/j.jclepro.2017.10.199 [19] KIM S H, SHIN HS. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste[J]. International Journal of Hydrogen Energy, 2008, 33(19): 5266-5274. [20] KIM H J, KIM S H, CHOI Y G, et al. Effect of enzymatic pretreatment on acid fermentation of food waste[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(6): 974-980. [21] YIN J, YU X, WANG K, et al. Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21713-21720. doi: 10.1016/j.ijhydene.2016.07.094 [22] WANG K, YIN J, SHEN D, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH[J]. Bioresource Technology, 2014, 161: 395-401. doi: 10.1016/j.biortech.2014.03.088 [23] LI X, CHEN Y, ZHAO S, et al. Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA[J]. Biochemical Engineering Journal, 2014, 84: 28-35. doi: 10.1016/j.bej.2013.12.020 [24] YIN J, WANG K, YANG Y, et al. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment[J]. Bioresource Technology, 2014, 171: 323-329. doi: 10.1016/j.biortech.2014.08.062 [25] YIN J, YU X, ZHANG Y, et al. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum[J]. Bioresource Technology, 2016, 216: 996-1003. doi: 10.1016/j.biortech.2016.06.053 [26] 马娜, 陈玲, 熊飞. 我国城市污泥的处置与利用[J]. 生态环境学报, 2003, 12(1): 92-95. doi: 10.3969/j.issn.1674-5906.2003.01.023 [27] KIM S H, HAN S K, SHIN H S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge[J]. International Journal of Hydrogen Energy, 2004, 29(15): 1607-1616. doi: 10.1016/j.ijhydene.2004.02.018 [28] ZHANG D, CHEN Y, ZHAO Y, et al. New sludge pretreatment method to improve methane production in waste activated sludge digestion[J]. Environmental Science & Technology, 2010, 44(12): 4802-4808. [29] WONG M T, ZHANG D, LI J, et al. Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment[J]. Biotechnology for Biofuels, 2013, 6(1): 38. doi: 10.1186/1754-6834-6-38 [30] FENG L, CHEN Y, YUAN H, et al. Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions[J]. Journal of Biotechnology, 2008, 136: S106. [31] SRAVAN J S, BUTTI S K, SARKAR O, et al. Electrofermentation of food waste: Regulating acidogenesis towards enhanced fatty acids production[J]. Chemical Engineering Journal, 2018, 334: 1709-1718. doi: 10.1016/j.cej.2017.11.005 [32] 任南琪. 产酸发酵微生物生理生态学[M]. 北京: 科学出版社, 2005: 20-50. [33] ZHANG S, LIU M, CHEN Y, et al. Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration[J]. Bioresource Technology, 2017, 224: 349-357. doi: 10.1016/j.biortech.2016.11.096 [34] MÜLLER N, WORM P, SCHINK B, et al. Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms[J]. Environmental Microbiology Reports, 2010, 2(4): 489-499. [35] BENSAID S, RUGGERI B, SARACCO G. Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: Medium term perspectives[J]. Energies, 2015, 8(1): 399-429. doi: 10.3390/en8010399 [36] YEN H W, LI R J, MA T W. The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum[J]. Journal of the Taiwan Insitute of Chemical Engineers, 2011, 42(6): 902-907. doi: 10.1016/j.jtice.2011.05.006 [37] LEE H S, SALERNO M B, RITTMANN B E. Thermodynamic evaluation on H2 production in glucose fermentation[J]. Environmental Science & Technology, 2008, 42(7): 2401-2407. [38] SAADY N M C. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13172-13191. [39] CHAGANTI S R, KIM D H, LALMAN J A. Flux balance analysis of mixed anaerobic microbial communities: Effects of linoleic acid (LA) and pH on biohydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(21): 14141-14152. doi: 10.1016/j.ijhydene.2011.04.161 [40] CASTILLO MARTINEZ F A, BALCIUNAS E M, SALGADO J M, et al. Lactic acid properties, applications and production: A review[J]. Trends in Food Science & Technology, 2013, 30(1): 70-83. [41] KLEEREBEZEM R, JOOSSE B, ROZENDAL R, et al. Anaerobic digestion without biogas?[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(4): 787-801. doi: 10.1007/s11157-015-9374-6 [42] LOPEZ-GARZON C S, STRAATHOF A J. Recovery of carboxylic acids produced by fermentation[J]. Biotechnology Advances, 2014, 32(5): 873-904. doi: 10.1016/j.biotechadv.2014.04.002 [43] DIONISI D, SILVA I M O. Production of ethanol, organic acids and hydrogen: An opportunity for mixed culture biotechnology?[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(2): 213-242. doi: 10.1007/s11157-016-9393-y [44] ZHENG M, ZHENG M, WU Y, et al. Effect of pH on types of acidogenic fermentation of fruit and vegetable wastes[J]. Biotechnology and Bioprocess Engineering, 2015, 20(2): 298-303. doi: 10.1007/s12257-014-0651-y [45] REN N Q, WANG B Z, HUANG J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor[J]. Biotechnology and Bioengineering, 1997, 54(5): 428-433. doi: 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G [46] 吴娟娟, 徐恒. 基于pH值调控的厌氧酸化产物分布及微生物群落特征研究[J]. 中国沼气, 2018, 36(1): 3-7. doi: 10.3969/j.issn.1000-1166.2018.01.001 [47] CHEN Y, JIANG S, YUAN H, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3): 683-689. doi: 10.1016/j.watres.2006.07.030 [48] ZHANG P, CHEN Y, ZHOU Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH[J]. Water Research, 2009, 43(15): 3735-3742. doi: 10.1016/j.watres.2009.05.036 [49] WU Y, MA H, ZHENG M, et al. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes[J]. Bioresource Technology, 2015, 191: 53-58. doi: 10.1016/j.biortech.2015.04.100 [50] CYSEWSKI G R, WILKE C R. Process design and economic studies of alternative fermentation methods for the production of ethanol[J]. Biotechnology & Bioengineering, 1978, 20(9): 1421-1444. [51] 任南琪, 宋佳秀, 安东, 等. 末端产物对乙醇型发酵菌群产氢能力及代谢进程的影响[J]. 环境科学, 2006, 27(8): 1608-1612. doi: 10.3321/j.issn:0250-3301.2006.08.024 [52] 任南琪, 刘敏, 王爱杰, 等. 两相厌氧系统中产甲烷相有机酸转化规律[J]. 环境科学, 2003, 24(4): 89-93. doi: 10.3321/j.issn:0250-3301.2003.04.017 [53] ZHENG M Y, ZHENG M X, WANG K J, et al. Start-up strategy to achieve excellent efficiency of degradation acetate, ethanol and propionate in UASB[J]. Applied Mechanics and Materials, 2011, 71-78: 2103-2106. doi: 10.4028/www.scientific.net/AMM.71-78.2103 [54] SUN J, KOSAKI Y, WATANABE N. Higher load operation by adoption of ethanol fermentation pretreatment on methane fermentation of food waste[J]. Bioresource Technology, 2020, 297: 122475. doi: 10.1016/j.biortech.2019.122475 [55] 任南琪, 秦智, 李建政. 不同产酸发酵菌群产氢能力的对比与分析[J]. 环境科学, 2003, 24(1): 70-74. doi: 10.3321/j.issn:0250-3301.2003.01.011 [56] 王勇, 任南琪, 孙寓姣, 等. 乙醇型发酵与丁酸型发酵产氢机理及能力分析[J]. 太阳能学报, 2002, 23(3): 366-373. doi: 10.3321/j.issn:0254-0096.2002.03.021 [57] 宫曼丽, 任南琪, 李永峰, 等. 生物制氢反应器不同发酵类型产氢能力的比较[J]. 哈尔滨工业大学学报, 2006, 38(11): 1826-1830. doi: 10.3321/j.issn:0367-6234.2006.11.003 [58] GUPTA A, VERMA J P. Sustainable bio-ethanol production from agro-residues: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 550-567. doi: 10.1016/j.rser.2014.08.032 [59] NOVAK M, STREHAIANO P M M, GOMA G, et al. Alcoholic fermentation on the inhibitory effect of ethanol[J]. Biotechnology & Bioengineering, 1981, 23(1): 201-211. [60] 李建政, 任南琪, 秦智, 等. 产酸相反应器快速启动和乙醇型发酵菌群驯化[J]. 哈尔滨工业大学学报, 2002, 34(5): 591-594. doi: 10.3321/j.issn:0367-6234.2002.05.002 [61] 刘敏, 任南琪, 丁杰, 等. 糖蜜、淀粉与乳品废水厌氧发酵法生物制氢[J]. 环境科学, 2004, 25(5): 65-69. doi: 10.3321/j.issn:0250-3301.2004.05.014 [62] 王旭, 郑明霞, 晏钰. 纤维素不同途径水解酸化效果对比研究[J]. 环境科学与技术, 2012, 35(11): 116-120. doi: 10.3969/j.issn.1003-6504.2012.11.025 [63] 王勇, 孙寓姣, 任南琪, 等. C/N对细菌产氢发酵类型及产氢能力的影响[J]. 太阳能学报, 2004, 25(3): 375-378. doi: 10.3321/j.issn:0254-0096.2004.03.023 [64] 李永峰, 万松, 焦安英, 等. 乙醇型发酵法生物制氢中COD浓度变化对发酵厌氧活性污泥产氢系统的影响[J]. 现代化工, 2009, 29(9): 37-39. doi: 10.3321/j.issn:0253-4320.2009.09.008 [65] 韩丹, 郑明月, 王凯军. 高负荷条件下pH调控对厌氧发酵产酸的影响[J]. 环境卫生工程, 2017, 25(4): 58-62. [66] TEMUDO M F, KLEEREBEZEM R, VAN LOOSDRECHT M. Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study[J]. Biotechnology and Bioengineering, 2007, 98(1): 69-79. doi: 10.1002/bit.21412 [67] HWANG M H, JANG N J, HYUN S H, et al. Anaerobic bio-hydrogen production from ethanol fermentation: The role of pH[J]. Journal of Biotechnology, 2004, 111(3): 297-309. doi: 10.1016/j.jbiotec.2004.04.024 [68] 林明, 任南琪, 王爱杰, 等. 几种金属离子对高效产氢细菌产氢能力的促进作用[J]. 哈尔滨工业大学学报, 2003, 35(2): 147-151. doi: 10.3321/j.issn:0367-6234.2003.02.005 [69] 王勇, 任南琪, 孙寓姣. Fe对产氢发酵细菌发酵途径及产氢能力影响[J]. 太阳能学报, 2003, 24(2): 20-24. [70] SZCZODRAK J, FIEDUREK J. Technology for conversion of lignocellulosic biomass to ethanol[J]. Biomass and Bioenergy, 1996, 10(5): 367-375. [71] NEVES M, KIMURA T, SHIMIZU N, et al. State of the art and future trends of bioethanol production[J]. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 2007, 1: 1-14. [72] PANDEY A, SOCCOL C R, NIGAM P, et al. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse[J]. Bioresource Technology, 2000, 74(1): 69-80. doi: 10.1016/S0960-8524(99)00142-X [73] LI J, AI B, REN N Q. Effect of initial sludge loading rate on the formation of ethanol type fermentation for hydrogen production in a continuous stirred-tank reactor[J]. Environmental Progress & Sustainable Energy, 2013, 32(4): 1271-1279. [74] 郑明月, 郑明霞, 王凯军, 等. 温度、pH和负荷对果蔬垃圾厌氧酸化途径的影响[J]. 可再生能源, 2012, 30(4): 75-79. [75] WU Y Y, WANG K J, ZHENG M Y, et al. Effect of pH on ethanol-type acidogenic fermentation of fruit and vegetable waste[J]. Waste Management, 2017, 60: 158-163. doi: 10.1016/j.wasman.2016.09.033 [76] 李永峰, 吕云汉, 李巧燕, 等. 低pH值下上流式厌氧污泥床反应器(UASB)以糖蜜为底物制取高纯度氢气[J]. 环境化学, 2016, 35(4): 810-816. doi: 10.7524/j.issn.0254-6108.2016.04.2015110501 [77] LIU Y, HAN W, XU X, et al. Ethanol production from waste pizza by enzymatic hydrolysis and fermentation[J]. Biochemical Engineering Journal, 2020, 156: 107528. doi: 10.1016/j.bej.2020.107528 [78] COHEN A, GEMERT J M, ZOETEMEYER R J, et al. Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters[J]. Process Biochemistry, 1984, 19: 228-232. [79] HE M, SUN Y, ZOU D, et al. Influence of temperature on hydrolysis acidification of food waste[J]. Procedia Environmental Sciences, 2012, 16: 85-94. doi: 10.1016/j.proenv.2012.10.012 [80] 宫曼丽, 任南琪, 邢德峰. 丁酸型发酵生物制氢反应器的运行特性研究[J]. 环境科学学报, 2005, 25(2): 275-2782. doi: 10.3321/j.issn:0253-2468.2005.02.026 [81] GANIGUÉ R, PUIG S, BATLLE-VILANOVA P, et al. Microbial electrosynthesis of butyrate from carbon dioxide[J]. Chemical Communications, 2015, 51(15): 3235-3238. doi: 10.1039/C4CC10121A [82] MARANG L, JIANG Y, VAN LOOSDRECHT M C, et al. Butyrate as preferred substrate for polyhydroxybutyrate production[J]. Bioresource Technology, 2013, 142(4): 232-239. [83] PHILIP S, KESHAVARZ T, ROY I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications[J]Journal of Chemical Technology & Biotechnology, 2007, 82(3): 233-247. [84] 贾璇. 典型农业废弃物干式厌氧发酵产氢影响因素的研究[J]. 环境污染与防治, 2020, 42(2): 133. [85] 任洪艳, 吕娴, 阮文权. 提高太湖蓝藻厌氧发酵产丁酸的预处理方法[J]. 食品与生物技术学报, 2011, 30(5): 734-739. [86] ROE A J, MCLAGGAN D, DAVIDSON I, et al. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids[J]. Journal of Bacteriology, 1998, 180(4): 767-772. doi: 10.1128/JB.180.4.767-772.1998 [87] FANG H H P, HONG L. Effect of pH on hydrogen production from glucose by a mixed culture[J]. Bioresource Technology, 2002, 82(1): 87-93. [88] KIM D H, KIM S H, JUNG K W, et al. Effect of initial pH independent of operational pH on hydrogen fermentation of food waste[J]. Bioresource Technology, 2011, 102(18): 8646-8652. doi: 10.1016/j.biortech.2011.03.030 [89] JIANG J, ZHANG Y, LI K, et al. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate[J]. Bioresource Technology, 2013, 143: 525-530. doi: 10.1016/j.biortech.2013.06.025 [90] LI Y, SU D, FENG H, et al. Anaerobic acidogenic fermentation of food waste for mixed-acid production[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(7): 631-635. doi: 10.1080/15567036.2015.1120824 [91] 李建政, 于泽, 昌盛, 等. CSTR和ACR丁酸型发酵制氢系统的运行特性比较[J]. 化工学报, 2012, 63(5): 1551-1557. doi: 10.3969/j.issn.0438-1157.2012.05.033 [92] VALDEZ-VAZQUEZ I, RIOS-LEAL E, NEZ A M, et al. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace[J]. Environmental Science & Technology, 2006, 40(10): 3409-3415. [93] NIE Y Q, HE L, DU G C, et al. Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process[J]. Process Biochemistry, 2007, 42(4): 599-605. doi: 10.1016/j.procbio.2006.11.007 [94] KIM D H, HAN S K, KIM S H, et al. Effect of gas sparging on continuous fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2158-2169. doi: 10.1016/j.ijhydene.2006.02.012 [95] TAHERDANAK M, ZILOUEI H, KARIMI K. Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12956-12963. doi: 10.1016/j.ijhydene.2015.08.004 [96] BECKERS L, HILIGSMANN S, STÉPHANIE D L, et al. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum[J]. Bioresource Technology, 2013, 133(2): 109-117. [97] ZHAO W, ZHANG Y, DU B, et al. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria[J]. Bioresource Technology, 2013, 142: 240-245. doi: 10.1016/j.biortech.2013.05.042 [98] 张晓阳, 卢忆, 马艳莉, 等. 丁酸梭菌生理功能及应用研究进展[J]. 中国食物与营养, 2012, 18(12): 31-35. doi: 10.3969/j.issn.1006-9577.2012.12.007 [99] 陈雪, 袁海荣, 邹德勋, 等. 餐厨垃圾和稻草两相厌氧发酵及其动力学[J]. 环境工程学报, 2015, 9(5): 2405-2411. doi: 10.12030/j.cjee.20150561 [100] 赵兴丽. 氢分压对有机废水发酵产氢过程的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [101] FU H, YU L, LIN M, et al. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose[J]. Metabolic Engineering, 2017, 40: 50-58. doi: 10.1016/j.ymben.2016.12.014 [102] CUI F, LI Y, WAN C. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis[J]. Bioresource Technology, 2011, 102(2): 1831-1836. doi: 10.1016/j.biortech.2010.09.063 [103] PANESAR P S, KENNEDY J F, GANDHI D N, et al. Bioutilisation of whey for lactic acid production[J]. Food Chemistry, 2007, 105(1): 1-14. [104] NGUYEN C M K J, SONG J K, CHOI G J, et al. D-Lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens[J]. Biotechnology Letters, 2012, 34(12): 2235-2240. doi: 10.1007/s10529-012-1023-3 [105] CHEN H, MENG H, NIE Z, et al. Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes[J]. Bioresource Technology, 2013, 128: 533-538. doi: 10.1016/j.biortech.2012.10.121 [106] CHEN H, LIU J, CHANG X, et al. A review on the pretreatment of lignocellulose for high-value chemicals[J]. Fuel Processing Technology, 2017, 160: 196-206. doi: 10.1016/j.fuproc.2016.12.007 [107] JONSSON L J, MARTIN C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199: 103-112. doi: 10.1016/j.biortech.2015.10.009 [108] HETÉNYI K, NÉMETH Á, SEVELLA B. Role of pH-regulation in lactic acid fermentation: Second steps in a process improvement[J]. Chemical Engineering & Processing Process Intensification, 2011, 50(3): 293-299. [109] ZHANG B, HE P J, YE N F, et al. Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes[J]. Bioresource Technology, 2008, 99(4): 855-862. doi: 10.1016/j.biortech.2007.01.010 [110] TANAKA T, HOSHINA M, TANABE S, et al. Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation[J]. Bioresource Technology, 2006, 97(2): 211-217. doi: 10.1016/j.biortech.2005.02.025 [111] KIM M S, NA J G, LEE M K, et al. More value from food waste: Lactic acid and biogas recovery[J]. Water Research, 2016, 96: 208-216. doi: 10.1016/j.watres.2016.03.064 [112] CALABIA B P, TOKIWA Y, AIBA S. Fermentative production of L: -(+)-lactic acid by an alkaliphilic marine microorganism[J]. Biotechnology Letters, 2011, 33(7): 1429-1433. doi: 10.1007/s10529-011-0573-0 [113] LIU C, LUO G, WANG W, et al. The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation[J]. Fuel, 2018, 224: 537-544. doi: 10.1016/j.fuel.2018.03.125 [114] YING M, XUE Y, BO Y, et al. Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20[J]. Bioresource Technology, 2012, 116: 334-339. doi: 10.1016/j.biortech.2012.03.103 [115] YE L, ZHOU X, HUDARI M S B, et al. Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106[J]. Bioresource Technology, 2013, 132: 38-44. doi: 10.1016/j.biortech.2013.01.011 [116] ZHANG Z, XIE Y, HE X, et al. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation[J]. Scientific Reports, 2016, 6: 37245. doi: 10.1038/srep37245 [117] CHEN H, HUO W, WANG B, et al. L-lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw[J]. Industrial Crops and Products, 2019, 141: 111749. doi: 10.1016/j.indcrop.2019.111749 [118] HU J, LIN Y, ZHANG Z, et al. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation[J]. Bioresource Technology, 2016, 214: 74-80. doi: 10.1016/j.biortech.2016.04.034 [119] DEMICHELIS F, PLEISSNER D, FIORE S, et al. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues[J]. Bioresource Technology, 2017, 241: 508-516. doi: 10.1016/j.biortech.2017.05.174 [120] PLEISSNER D, DEMICHELIS F, MARIANO S, et al. Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste[J]. Journal of Cleaner Production, 2017, 143: 615-623. [121] DJUKIĆ-VUKOVIĆ A P, MOJOVIĆ L V, JOKIĆ B M, et al. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite[J]. Bioresource Technology, 2012, 135(2): 454-458. [122] NEU A K, PLEISSNER D, MEHLMANN K, et al. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure L(+)-lactic acid production[J]. Bioresource Technology, 2016, 211: 398-405. doi: 10.1016/j.biortech.2016.03.122 [123] SMERILLI M, NEUREITER M, HAAS C, et al. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions[J]. Journal of Chemical Technology & Biotechnology, 2015, 90: 648-657. [124] CINGADI S, SRIKANTH K, ARUN E V R, et al. Statistical optimization of cassava fibrous waste hydrolysis by response surface methodology and use of hydrolysate based media for the production of optically pure d-lactic acid[J]. Biochemical Engineering Journal, 2015, 102: 82-90. doi: 10.1016/j.bej.2015.02.006 [125] STORE M R. Propionic acid market for animal feed & grain preservatives, calcium & sodium propionates, cellulose acetate propionate and other applications: Global industry perspective, comprehensive analysis, size, share, growth, segment, trends and forecast 2014-2020.[M/OL]. [2020-07-01]. New York: Market Research Store, 2019. Available online: http://www.marketresearchstore.com/report/propionic-acid-market-for-animal-feed-grain-z39993. [126] 郑明月, 王凯军, 郑明霞, 等. 厌氧颗粒污泥反应器对丙酸和丁酸冲击负荷变化的响应研究[J]. 环境工程学报, 2011, 5(9): 1994-1998. [127] CHEN Y, RANDALL A A, MCCUE T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research, 2004, 38(1): 27-36. doi: 10.1016/j.watres.2003.08.025 [128] LIU Y, CHEN Y, ZHOU Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids[J]. Chemosphere, 2007, 66(1): 123-129. doi: 10.1016/j.chemosphere.2006.05.004 [129] HUANG L, CHEN Z, XIONG D, et al. Oriented acidification of wasted activated sludge (WAS) focused on odd-carbon volatile fatty acid (VFA): Regulation strategy and microbial community dynamics[J]. Water Research, 2018, 142(1): 256-266. [130] BOYAVAL P, CORRE C. Production of propionic acid[J]. Diary Science & Technology, 1995, 75(4): 453-461. [131] KIM H J, CHOI Y G, KIM D Y, et al. Effect of pretreatment on acid fermentation of organic solid waste[J]. Water Science Technology, 2005, 52(1/2): 153-160. doi: 10.2166/wst.2005.0511 [132] YAN B H, SELVAM A, XU S Y, et al. A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis[J]. Bioresource Technology, 2014, 159: 249-257. doi: 10.1016/j.biortech.2014.02.014 [133] STEINBUSCH K J J, ARVANITI E, HAMELERS H V M, et al. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation[J]. Bioresource Technology, 2009, 100(13): 3261-3267. doi: 10.1016/j.biortech.2009.01.049 [134] RAGO L, GUERRERO J, BAEZA J A, et al. 2-Bromoethanesulfonate degradation in bioelectrochemical systems[J]. Bioelectrochemistry, 2015, 105: 44-49. doi: 10.1016/j.bioelechem.2015.05.001 [135] HAN S K, SHIN H S. Enhanced acidogenic fermentation of food waste in a continuous-flow reactor[J]. Waste Management & Research, 2002, 20(2): 110-118. [136] 赵振焕, 金春姬, 张鹏, 等. 酵母菌对厨余垃圾厌氧发酵产乙酸的影响[J]. 环境工程学报, 2009, 3(10): 1885-1888. [137] HE L, JIN W, LIU X L, et al. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH[J]. Water Research, 2012, 46(3): 799-807. doi: 10.1016/j.watres.2011.11.047 [138] 张波, 史红钻, 张丽丽, 等. pH对厨余废物两相厌氧消化中水解和酸化过程的影响[J]. 环境科学学报, 2005, 25(5): 665-669. doi: 10.3321/j.issn:0253-2468.2005.05.017 [139] 赵杰红, 张波, 蔡伟民. 温度对厨余垃圾两相厌氧消化中水解和酸化过程的影响[J]. 环境科学, 2006, 27(8): 1682-1686. doi: 10.3321/j.issn:0250-3301.2006.08.038 [140] YUAN Q, SPARLING R, OLESZKIEWICZ J. VFA generation from waste activated sludge: Effect of temperature and mixing[J]. Chemosphere, 2011, 82(4): 603-607. doi: 10.1016/j.chemosphere.2010.10.084 [141] SHI J, WANG Z, STIVERSON J A, et al. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions[J]. Bioresource Technology, 2013, 136: 574-581. doi: 10.1016/j.biortech.2013.02.073 [142] BENGTSSON S, HALLQUIST J, WERKER H A, et al. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production[J]. Biochemical Engineering Journal, 2008, 40(3): 492-499. doi: 10.1016/j.bej.2008.02.004 [143] HO D. A high-rate high temperature anaerobic digestion system for sludge treatment[D]. St Lucia: The University of Queensland, 2014. [144] MASPOLIM Y, ZHOU Y, GUO C H, et al. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation[J]. Bioresource Technology, 2015, 190: 289-298. doi: 10.1016/j.biortech.2015.04.087 [145] ZHAO J W, WANG D B, LIU Y W, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation[J]. Bioresource Technology, 2018, 249: 431-438. doi: 10.1016/j.biortech.2017.10.050 [146] YUAN H, CHEN Y, ZHANG H, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science & Technology, 2006, 40(6): 2025-2029. [147] CAVINATO C, DA ROS C, PAVAN P, et al. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage[J]. Bioresource Technology, 2017, 223: 59-64. doi: 10.1016/j.biortech.2016.10.041 [148] LIM S J, KIM B J, JEONG C M, et al. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor[J]. Bioresource Technology, 2008, 99(16): 7866-7874. doi: 10.1016/j.biortech.2007.06.028 [149] DINSDALE R M, PREMIER G C, HAWKES F R, et al. Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters[J]. Bioresource Technology, 2000, 72(2): 159-168. doi: 10.1016/S0960-8524(99)00105-4 [150] LI L, WANG Y, LI Y. Effects of substrate concentration, hydraulic retention time and headspace pressure on acid production of protein by anaerobic fermentation[J]. Bioresource Technology, 2019, 283: 106-111. doi: 10.1016/j.biortech.2019.03.027 [151] MIN K S, KHAN A R, KWON M K, et al. Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(8): 909-915. [152] DAHIYA S, SARKAR O, SWAMY Y V, et al. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen[J]. Bioresource Technology, 2015, 182: 103-113. doi: 10.1016/j.biortech.2015.01.007 [153] MÖSCHE M, JÖRDENING H J. Detection of very low saturation constants in anaerobic digestion: Influences of calcium carbonate precipitation and pH[J]. Applied Microbiology and Biotechnology, 1998, 49(6): 793-799. doi: 10.1007/s002530051248 [154] BARREDO M S, EVISON L M. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values[J]. Applied and Environmental Microbiology, 1991, 57(6): 1764-1769. doi: 10.1128/AEM.57.6.1764-1769.1991 [155] 任南琪, 赵丹, 陈晓蕾, 等. 厌氧生物处理丙酸产生和积累的原因及控制对策[J]. 中国科学, 2002, 32(1): 83-89. [156] LUO J, FENG L, ZHANG W, et al. Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: Influence of SRT and temperature[J]. Applied Energy, 2014, 113: 51-58. doi: 10.1016/j.apenergy.2013.07.006 [157] GARCIA-AGUIRRE J, AYMERICH E, GONZALEZ-MTNEZ DE G, et al. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence[J]. Bioresource Technology, 2017, 244: 1081-1088. doi: 10.1016/j.biortech.2017.07.187 [158] CAPSON-TOJO G, RUIZA D, ROUEZB M, et al. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste[J]. Bioresource Technology, 2017, 245: 724-733. doi: 10.1016/j.biortech.2017.08.149 [159] ZHANG L, LEE Y W, JAHNG D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements[J]. Bioresource Technology, 2011, 102(8): 5048-5059. doi: 10.1016/j.biortech.2011.01.082 [160] BANKS C J, ZHANG Y, JIANG Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135. doi: 10.1016/j.biortech.2011.10.068 [161] MA J X, MUNGONI L J, VERSTRAETE W, et al. Maximum removal rate of propionic acid as a sole carbon source in UASB reactors and the importance of the macro- and micro-nutrients stimulation[J]. Bioresource Technology, 2009, 100(14): 3477-3482. doi: 10.1016/j.biortech.2009.02.060 [162] BANKS C J, CHESSHIRE M, HEAVEN S, et al. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance[J]. Bioresource Technology, 2011, 102(2): 612-620. doi: 10.1016/j.biortech.2010.08.005 [163] KIM M D, SONG M, JO M, et al. Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1611-1618. doi: 10.1007/s00253-009-2316-x [164] LI Z, QIN W, DAI Y. Liquid-Liquid equilibria of acetic, propionic, butyric, and valeric acids with trioctylamine as extractant[J]. Journal of Chemical & Engineering Data, 2002, 47(4): 843-848. [165] OZADALI F, GLATZ B A, GLATZ C E. Fed-batch fermentation with and without on-line extraction for propionic and acetic acid production by Propionibacterium acidipropionici[J]. Applied Microbiology and Biotechnology, 1996, 44(6): 710-716. [166] ZHU Y, LI J, TAN M, et al. Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source[J]. Bioresource Technology, 2010, 101(22): 8902-8906. doi: 10.1016/j.biortech.2010.06.070 [167] LIU Z, GE Y, XU J, et al. Efficient production of propionic acid through high density culture with recycling cells of Propionibacterium acidipropionici[J]. Bioresource Technology, 2016, 216: 856-861. doi: 10.1016/j.biortech.2016.06.023 [168] YANG H, WANG Z, LIN M, et al. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis[J]. Bioresource Technology, 2018, 250: 1-9. doi: 10.1016/j.biortech.2017.11.016 [169] CHOUBISA B, PATEL H, PATEL M, et al. Microbial production of lactic acid by using crude glycerol from biodiesel[J]. Journal of Microbiology & Biotechnology Research, 2017, 2(1): 90-93. [170] HAHNKE S, LANGER T, KOECK D E, et al. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1466-1475. doi: 10.1099/ijsem.0.000902 [171] CIBIS K G, GNEIPEL A, KÖNIG H. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants[J]. Journal of Biotechnology, 2016, 220(20): 51-63. [172] EATON D C, GABELMAN A. Fed-batch and continuous fermentation of Selenomonas ruminantium for natural propionic, acetic and succinic acids[J]. Journal of Industry Microbiology, 1995, 15(1): 32-38. doi: 10.1007/BF01570010 [173] FENG X, CHEN F, XU H, et al. Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor[J]. Bioresource Technology, 2011, 102(10): 6141-6146. doi: 10.1016/j.biortech.2011.02.087