-
水稻是全球也是我国主要粮食作物之一[1-2],我国有超过65%的人口以稻米为主食[3]。近年来,我国农作物重金属污染日益严重,以大米镉(Cd)超标问题最为突出[4-6]。广泛存在的Cd超标大米现象对我国稻米生产造成了巨大负面影响[7]。有报道指出,稻米Cd已经成为我国以稻米为主食人群的主要Cd暴露源[5, 8-9]。控制和降低稻米Cd累积是保障稻米质量安全的关键,也是当前我国粮食重金属污染研究的主要方向[10]。
在稻米Cd污染防控措施中,石灰作为有效且经济的重金属污染土壤修复材料已被广泛应用,但其大田应用效果存在较强的不确定性[11-13]。WANG等[14]通过小区实验发现,施用石灰后,稻米Cd含量下降、不变和上升的比例分别为50.0%、18.8%和31.2%。YANG等[15]通过大田示范发现,稻米Cd含量随着石灰添加量的升高,出现先降低再升高的现象。当前,对于石灰田间施用降低稻米Cd含量的具体效果和潜在风险仍不明确;而且,将大田施用和田间实验相结合的研究较少。
攸县为我国湖南省稻米主产区,近年来的“镉大米”事件引发了社会的广泛关注,为当地经济发展和农产品安全带来挑战[16]。石灰是降低土壤Cd活性和抑制农作物Cd累积的有效途径,但其大田应用效果具有一定不确定性[15],针对其长期施用的可持续性亟待研究。本研究以攸县为研究区,结合区域调查和田间实验,探究石灰施用对于土壤-水稻系统Cd污染的控制效果及施用风险,以期为当前镉米控制措施的安全应用和调整提供参考。
石灰对稻米吸收Cd的影响及施用风险的区域调查与田间实验
Effects and application risk of liming on cadmium uptake by rice
-
摘要: 通过区域调查与田间实验相结合的方法探讨施用石灰对土壤-水稻系统镉(Cd)污染的控制效果和潜在风险。区域调查结果显示,研究区稻米Cd超标率高达72.6%;石灰处理可降低21.1%的土壤Cd活性和9.7%的稻米Cd超标率,并小幅提升土壤pH,但存在不确定性。田间实验结果显示,经石灰处理后,稻米Cd含量从0.26 mg·kg−1降为0.11 mg·kg−1,以高积累品种(VU8)Cd含量下降(降低0.19 mg·kg−1)最为明显。当石灰施用量从1.20 t·hm−2提升到2.25 t·hm−2时,稻米Cd含量不降反升。高Cd累积品种对于石灰使用量变化较为敏感。除土壤pH外,土壤锰(Mn)是稻米Cd累积的主要影响因子之一,而石灰施用造成了14.9%的土壤Mn流失,这可能是导致石灰效果不稳定的原因之一。调整石灰用量和配施Mn肥是解决稻米Cd污染的有效途径。Abstract: The control effect and potential risk of lime application on soil-rice system cadmium (Cd) pollution were investigated based a method combining the regional investigation and the field experiment. Regional investigation showed that the over-limit ratio of Cd concentration in rice in the study area was as high as 72.6%, the use of lime could reduce the soil Cd activity by 21.1% and the rice Cd exceeding rate by 9.7%, and increase the soil pH slightly, but there was uncertainty. Field experiment showed that the concentration of Cd in rice with lime treatment decreased from 0.26 mg·kg−1 to 0.11 mg·kg−1, and the high accumulation variety (VU8) showed more sensitivity (decrease by 0.19 mg·kg−1). When the lime application rate increased from 1.20 t·hm−2 to 2.25 t·hm−2, the Cd content of rice did not decrease but increase. Varieties with high Cd accumulation are more sensitive to changes in lime usage. In addition to soil pH, soil Mn is the major influencing factor of Cd accumulation in rice, and the lime use lead a loss of soil Mn by 14.9%, which may be one of the reasons for the unstable effect of lime use. The effective way to solve the Cd pollution of rice is to adjust the amount of lime dosage and apply Mn fertilizer.
-
Key words:
- lime application /
- soil Mn concentration /
- soil pH /
- ecological risk /
- rice Cd uptake factor
-
表 1 供试土壤基本理化性质
Table 1. Basic physical and chemical properties of the tested soil
pH Cd/(mg·kg− 1) 有机质/(g·kg− 1) 阳离子交换量/(mol·kg−1) 黏粒/% 电导率/(μS·dm− 1) 氧化还原电位/mV 5.65 0.33 47.1 6.2 63.2 665.7 84.9 -
[1] KOPITTKE P M, MENZIES N W, WANG P, et al. Soil and the intensification of agriculture for global food security[J]. Environment International, 2019, 132: 105078. doi: 10.1016/j.envint.2019.105078 [2] DENG X, CHEN Y, YANG Y, et al. Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer[J]. Environmental Pollution, 2020, 262: 114289. doi: 10.1016/j.envpol.2020.114289 [3] YE X, MA Y, SUN B. Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety[J]. Journal of Environmental Sciences, 2012, 24(9): 1647-1654. doi: 10.1016/S1001-0742(11)60982-0 [4] 李明, 陈宏坪, 王子萱, 等. 石灰钝化法原位修复酸性镉污染菜地土壤[J]. 环境工程学报, 2018, 12(10): 2864-2873. doi: 10.12030/j.cjee.201804036 [5] WANG M E, CHEN W P, PENG C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China[J]. Chemosphere, 2016, 144: 346-351. doi: 10.1016/j.chemosphere.2015.09.001 [6] WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 2019, 53(8): 2500-2508. [7] ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. [8] ZHAO D, LIU R Y, XIANG P, et al. Applying cadmium relative bioavailability to assess dietary intake from rice to predict cadmium urinary excretion in nonsmokers[J]. Environmental Science & Technology, 2017, 51(12): 6756-6764. [9] RӦMKENS P F A M, GOU H Y, CHU C L, et al. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines[J]. Environmental Pollution, 2009, 157(8/9): 2435-2444. doi: 10.1016/j.envpol.2009.03.009 [10] LU Y, SONG S, WANG R, et al. Impacts of soil and water pollution on food safety and health risks in China[J]. Environment International, 2015, 77: 5-15. doi: 10.1016/j.envint.2014.12.010 [11] URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 1-8. doi: 10.1186/1939-8433-5-1 [12] CHEN H, WANG P, GU Y, et al. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling[J]. Environmental Pollution, 2020, 261: 114151. doi: 10.1016/j.envpol.2020.114151 [13] 谢运河, 纪雄辉, 田发祥, 等. 不同Cd污染特征稻田施用钝化剂对水稻吸收积累Cd的影响[J]. 环境工程学报, 2017, 11(2): 1242-1250. doi: 10.12030/j.cjee.201510041 [14] WANG M E, YANG Y, CHEN W P. Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in Southern China[J]. Journal of Environmental Quality, 2018, 47(2): 306-311. doi: 10.2134/jeq2017.06.0237 [15] YANG Y, WANG M E, CHANG A C, et al. Inconsistent effects of limestone on rice cadmium uptake: Results from multi-scale field trials and large-scale investigation[J]. Science of the Total Environmental, 2020, 709: 1-7. [16] 张敏, 王美娥, 陈卫平, 等. 湖南攸县典型煤矿和工厂区水稻田土壤镉污染特征及污染途径分析[J]. 环境科学, 2015, 36(4): 1425-1430. [17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [18] 李艳玲, 陈卫平, 杨阳, 等. 济源市平原区农田重金属污染特征及综合风险评估[J]. 环境科学学报, 2020, 40(6): 2229-2236. [19] PRETORIUS B, SCHÖNFELDT H C, HALL N. Total and haem iron content lean meat cuts and the contribution to the diet[J]. Food Chemistry, 2016, 193: 97-101. doi: 10.1016/j.foodchem.2015.02.109 [20] 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 2018. [21] 国家卫生部, 国家标准化管理委员会. 食品中污染物限量: GB 2762-2005[S]. 北京: 中国标准出版社, 2005. [22] RIZWAN M, ALI S, ADREES M, et al. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: A critical review[J]. Environmental Science and Pollution Research, 2016, 23(18): 1-21. [23] SEBASTIAN A, PRASAD M N V. Cadmium minimization in rice: A review[J]. Agronomy for Sustainable Development, 2014, 34(1): 155-173. doi: 10.1007/s13593-013-0152-y [24] PITTMAN J K. Managing the manganese: Molecular mechanisms of manganese transport and homeostasis[J]. New Phytologist, 2005, 167(3): 733-742. doi: 10.1111/j.1469-8137.2005.01453.x [25] YANG M, ZHANG Y, ZHANG L, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4861. doi: 10.1093/jxb/eru259 [26] 国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. [27] 龚子同, 韦启璠, 龚高实. 石灰化水稻土的形成[J]. 土壤学报, 1988(1): 1-12.