Processing math: 100%

利用新型高温好氧堆肥器提高鸡粪谷壳有机肥肥效

晏琛, 曹雷鹏, 刘玉环, 阮榕生, 宁武建, 刘晓成, 李锐. 利用新型高温好氧堆肥器提高鸡粪谷壳有机肥肥效[J]. 环境工程学报, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103
引用本文: 晏琛, 曹雷鹏, 刘玉环, 阮榕生, 宁武建, 刘晓成, 李锐. 利用新型高温好氧堆肥器提高鸡粪谷壳有机肥肥效[J]. 环境工程学报, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103
YAN Chen, CAO Leipeng, LIU Yuhuan, RUAN Rongsheng, NING Wujian, LIU Xiaocheng, LI Rui. Effect of new high temperature aerobic composting device on maturation of chicken manure and rice chaff[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103
Citation: YAN Chen, CAO Leipeng, LIU Yuhuan, RUAN Rongsheng, NING Wujian, LIU Xiaocheng, LI Rui. Effect of new high temperature aerobic composting device on maturation of chicken manure and rice chaff[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103

利用新型高温好氧堆肥器提高鸡粪谷壳有机肥肥效

    作者简介: 晏琛(1996—),男,硕士研究生。研究方向:食品(含生物质)资源高效转化与利用。E-mail:1475399596@qq.com
    通讯作者: 曹雷鹏(1986—),男,博士,助理研究员。研究方向:食品及农业废弃物资源化利用。E-mail:caoleipeng2@163.com
  • 基金项目:
    国家自然科学基金资助项目(21466022,21878139);南昌大学食品科学与技术国家重点实验室自由探索项目(SKLF-ZZB-201915)
  • 中图分类号: X713

Effect of new high temperature aerobic composting device on maturation of chicken manure and rice chaff

    Corresponding author: CAO Leipeng, caoleipeng2@163.com
  • 摘要: 针对传统堆肥器存在堆肥时间长、环境污染严重等问题,开发快速、无臭、环保型堆肥器对促进粪污肥料化具有重要意义。研发的新型高温好氧堆肥器主要包括4个部分:控制面板、发酵罐(50 L有效容积)、空压机通风系统(0.15 m3·s−1排气量和40 L气容量)、氨气吸收系统(188 L容积及内部成阶梯环形吸收模式)。利用新型高温好氧堆肥器对鸡粪谷壳进行堆肥处理,并采用盆栽实验探明鸡粪谷壳有机肥和回收的磷酸铵镁(MAP)的肥效。结果表明,鸡粪谷壳物料(C/N=25)在在新型高温好氧堆肥器中堆肥处理40 d后,可形成黑色无臭味、圆球状及无有害菌群的堆肥产物;且所得产物中营养成分含量分别为50.53%有机质、1.86% TN、1.56% TP(P2O5)及1.59% TK(K2O),其指标均达到了国家有机肥料标准(NY 525-2012)。盆栽实验表明,以施肥后空心菜的产量及多糖含量为肥效指标,施用鸡粪谷壳堆肥产物的肥效高于施用化肥获得的肥效;而且,通过氨吸收塔回收氨气产生的MAP可有效提高堆肥产物的整体肥效。该研究结果可为新型高温好氧堆肥器的技术优化提供参考。
  • 锑(Sb)和砷(As)及其化合物因其强生物毒性和潜在的致癌性而受到广泛关注和重视,许多国家与组织已将他们列为优先控制污染物,并对其在饮用水中的浓度进行了限定。世界卫生组织规定饮用水中锑、砷的最大质量浓度分别为0.01 mg∙L−1和0.02 mg∙L−1[1]。此外,由于锑和砷的地球化学行为和理化性质的相似性[2],加之目前许多地区对工业废水进行集中化处理[3],导致了废水水体中他们的共存。例如,国内湖南锡矿山和广西大厂等矿山附近水体以及贵州省独山县某厂的冶炼废水中均同时检测到了较高浓度的Sb(Ⅴ)和As(Ⅴ),尤其是锡矿山周围水体中锑和砷的质量浓度可达10.09 mg∙L−1和1.62 mg∙L−1[4-6]。而当Sb(Ⅴ)和As(Ⅴ)共存时,不仅会对生态环境造成更大的威胁,对其处理也提出更高要求。由此,选择一种合适的工艺处理复合重金属废水对实际废水治理具有重要实际意义。

    在众多处理工艺中,吸附法因操作简单、效率高、经济适用等优势被广泛采用。开发高性能吸附剂成为当前的研究热点。目前,众多吸附剂被开发用于处理Sb(Ⅴ)和As(Ⅴ)废水,包括铁氧(氢氧)化物、活性氧化铝、沸石、阴离子粘土矿物[7]等。其中,水滑石(layered double hydroxides, LDHs)作为一种新型环境功能材料,因其比表面积大、阴离子交换容量大、热稳定性好等优点被广泛应用于去除Sb(Ⅴ)、As(Ⅴ)等离子污染物[8]。李杨等[9]研究表明,MgAl LDHs对Sb(Ⅴ)的最大吸附量可达50.52 mg∙g−1;ARDAU等[10]研究表明,ZnAl LDHs对Sb(Ⅴ)的最大离子交换容量为30.3 mg∙g−1。郭亚祺等[11]研究表明,煅烧水滑石在共存氟砷的水体中对砷的最大吸附量为51.02 mg∙g−1;VIOLANTE等[12]通过共沉淀法制备的LDHs对AsO4的吸附量为52.58 mg∙g−1。然而,LDHs材料对2种污染物的去除效果仍然有限,且鲜有关于二者共存体系的去除研究。

    LDHs具有高度可变的矿物结构,LDHs板层结构类似水镁石Mg(OH)2的正八面体,可以看作是Mg2+离子通过类质同象作用部分地被M3+离子取代。为了中和M3+/Mg2+的正电荷,需要更多的阴离子达到电荷平衡。因此,其层间阴离子具有可交换性,为含有功能基团的有机分子插入层间来改性LDHs增强其吸附性能提供了可行性[13-14]。氨基酸是蛋白质的基本组成单元,通常以兼性离子的形式存在于水溶液中。在碱性环境中,其可以电离成阴离子,呈现出负电性,通过与LDHs主层板间的静电吸引、氢键等作用插入LDHs层间[15]。使用氨基酸作为客体阴离子改性LDHs时,其中所含的氮、氧等官能团均对Sb(Ⅴ)、As(Ⅴ)这类重金属离子有着较强的络合作用。此外,氨基酸属于环境友好的生物大分子,对环境没有任何危害。因此,利用氨基酸改性来提升LDHs对Sb(Ⅴ)和As(Ⅴ)去除性能的潜力巨大[16]。在众多氨基酸中,甲硫氨酸(Methionine, Met)作为功能基团丰富的代表已经被用于改性环境材料以提升污染物的去除性能。例如,甲硫氨酸改性的蒙脱石和纤维素对Pb2+和氨基黑10B的吸附量分别提高了16.5%和400%[17-18]。基于此,本研究选择甲硫氨酸作为模型分子,采用共沉淀法合成了改性水滑石(Met/LDHs),通过XRD、FTIR、XPS等多种分析测试手段对合成产物的物相组成、表面官能团等进行了表征和分析;采用静态批处理法考察了Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附能力,且探究了其对Sb(Ⅴ)和As(Ⅴ)的吸附机制,以期为废水去除含锑、砷治理技术提供参考。

    主要试剂有六水合硝酸镁(Mg(NO3)2∙6H2O)、九水合硝酸铁(Fe(NO3)3∙9H2O)、焦锑酸钾(KSbO6H6)、砷酸钠(Na3AsO4)、氢氧化钠(NaOH)、硝酸(HNO3)、无水乙醇(C2H6O)和甲硫氨酸(C5H11O2NS),以上试剂均为分析纯级别;实验用水为去离子水,电阻率为18.25 MΩ∙cm−1。主要仪器有pH计(SevenMulti S40,美国 梅特勒-托利公司)、蠕动泵(BT100L,保定雷弗流体科技有限公司)、恒温摇床(TS-2102C,常州 恩培仪器制造有限公司)。

    首先将0.02 mol Mg(NO3)2∙6H2O和0.01 mol Fe(NO3)3∙9H2O溶解于150 mL去离子水中,再与1 mol∙L−1 NaOH溶液同时通过蠕动泵滴入已含有150 mL去离子水的圆底烧瓶中,并于室温下保持匀速地搅拌,控制溶液pH在9.5~10,整个反应过程在N2保护下进行,再将所得悬浮液置于80 ℃晶化12 h,最后用去离子水和无水乙醇离心洗涤5次,干燥后研磨得到LDHs样品。称取0.02 mol甲硫氨酸搅拌溶解于150 mL的去离子水中,用NaOH调节pH至10置于圆底烧瓶中,其余步骤同上,制得甲硫氨酸改性的LDHs,记为Met/LDHs。

    采用静态批处理法开展吸附实验。典型步骤是称取0.01 g吸附剂加入到20 mL装有一定浓度的Sb(Ⅴ)或As(Ⅴ)溶液的锥形瓶中,再将其置入转速为150 r∙min−1、温度为25 ℃的恒温摇床中进行反应,待到指定时间后取出锥形瓶,并用0.45 μm微孔滤膜过滤悬浮液,所得清液用ICP-AES进行浓度测试。分别考察吸附时间、吸附质的初始浓度、初始pH、共存体系以及解吸循环对吸附性能的影响。

    1)接触时间。在Sb(Ⅴ)和As(Ⅴ)初始质量浓度分别为50 mg∙L−1、初始pH=5.0±0.1的条件下,研究了LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附过程与接触时间的关系。

    2)吸附质的初始浓度。在溶液初始pH=5.0±0.1,接触时间为12 h的条件下,研究LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附等温线。

    3)初始pH。设定初始pH在3~10,初始质量浓度为50 mg∙L−1,接触时间为12 h,考察了pH对Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)效果的影响。

    4)共存体系。设定一种重金属离子的初始质量浓度为0~200 mg∙L−1,在其中投加0~50 mg∙L−1另一种重金属离子,并在初始pH为5.0±0.1,接触时间为12 h的条件下考察了在Sb(Ⅴ)和As(Ⅴ)共存体系中Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附性能。

    5)解析循环。在Met/LDHs分别对Sb(Ⅴ)和As(Ⅴ)吸附饱和后,选用0.1 mol∙L−1 NaOH为解吸剂,考察了Met/LDHs在吸附-解吸循环过程中对Sb(Ⅴ)和As(Ⅴ)的去除性能。

    采用X-射线衍射仪(Ultima IV,日本理学公司)分析产物的物相组成及晶体结构;使用傅里叶变换红外光谱仪(Spectrum One,美国铂金埃尔默公司)测定吸附剂的官能团;使用X射线光电子能谱仪(Thermo Escalab 250Xi,美国赛默飞世尔公司)测定样品表面的元素组成;使用Zeta电位分析仪(Zetasize Nano 250Xi,英国马尔文公司)测定样品表面电位;使用电感耦合等离子发射光谱仪(iCAP 6500,美国赛默飞世尔公司)测定吸附后Sb(Ⅴ)和As(Ⅴ)的质量浓度。

    1)实验中Met/LDHs分别对Sb(Ⅴ)和As(Ⅴ)的吸附量和去除率分别根据式(1)和式(2)计算。

    qe=(CoCe)Vm (1)
    R=CoCeCo×100% (2)

    式中:qe为平衡吸附量,mg∙g−1CoCe分别为Sb(Ⅴ)和As(Ⅴ)溶液的起始浓度和平衡浓度,mg∙L−1V为溶液体积,mL;m为吸附剂质量,mg;R为表示去除率,%。

    2)为评估吸附系统的质量传递过程,采用拟一级动力学(式(3))和拟二级动力学模型(式(4))拟合实验结果。

    ln(qeqe)=lnqek1t (3)
    tqt=1k2q2e+1qtt (4)

    式中:qe为平衡吸附容量,mg∙g−1qtt时刻吸附容量,mg∙g−1k1为拟一级动力学吸附速率常数,h−1k2为拟二级动力学吸附速率常数,g∙(mg∙h) -1t为吸附时间,h。

    3)并对吸附数据应用Langmuir等温线模型(式(5))和Freundlich等温线模型(式(6))进行拟合。

    qe=qmKLCe1+KLCe (5)
    qe=KFC1ne (6)

    式中:Ce为平衡浓度,mg∙L−1qm为饱和吸附量,mg∙g−1KL为Langmuir常数;nKF为Freundlich常数。

    1) XRD分析。样品LDHs和Met/LDHs的XRD图谱如图1(a)所示。由图1(a)可知,2种材料的全部衍射峰均能与水滑石相对应,未见杂峰,并且基线平稳,说明实验制备得到了结晶度较好的纯相水滑石。与LDHs相比较而言,Met/LDHs的(003)晶面的向低衍射角度的方向偏移(图1(b)),表明其层间距发生变化。根据布拉格方程可以进一步地计算出甲硫氨酸分子改性后的水滑石(003)晶面对应的基底间距值(d003)由0.776 nm增大到0.801 nm,表明甲硫氨酸分子成功插入到LDHs层间,并与LDHs主层板平行排列[16, 19]

    图 1  样品LDHs和Met/LDHs的XRD图
    Figure 1.  XRD patterns of LDHs and Met/LDHs

    2)FTIR和XPS分析。样品LDHs和Met/LDHs的FTIR光谱如图2(a)所示。可见,未改性镁铁水滑石在3 438 cm−1和1 632 cm−1附近的吸收峰对应于—OH的伸缩振动和弯曲振动;1 384 cm−1处的吸收峰归属于NO3的伸缩振动,而在500~1 010 cm−1处出现的吸收峰则来源于LDHs层板中M—O、O—M—O和M—O—M的晶格振动(M指的是Mg或者Fe[20])。合成过程中加入甲硫氨酸分子后,样品在2 920 cm−1附近新增了对应—CH2的伸缩振动,在1 500 cm−1处新增了对应于—COO的伸缩振动峰。而且,—OH对应吸收峰偏移至3 432 cm−1和1 624 cm−1,表明插入分子可能与水滑石发生氢键作用[21]。利用XPS技术对Met/LDHs进行了进一步分析如图2(b)所示。结果表明,Met/LDHs光谱中位于163.29 eV峰与C—S相对应,进一步表明材料中具有甲硫氨酸分子[22]。上述结果表明,在合成中引入甲硫氨酸分子可以丰富镁铁水滑石的功能基团。

    图 2  样品的FTIR和XPS光谱图
    Figure 2.  FTIR and XPS spectra of samples

    接触时间对LDHs和Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)性能影响见图3(a)~(b)。由图3(a)~(b)可见,2种材料对Sb(Ⅴ)和As(Ⅴ)的吸附量随时间呈相同变化趋势,即在前2 h的吸附速率较快,之后则以较慢的速度进行,约在12 h时达到吸附平衡。在吸附初始阶段,快速的吸附速率可能是由于吸附剂表面存在大量的活性位点;而随着Sb(Ⅴ)和As(Ⅴ)不断占据这些活性位点,吸附质需进入吸附剂内部反应,需要克服更大的空间位阻,从而导致吸附速率的降低[1]。为了分析吸附机制,进一步对实验结果进行了吸附动力学模拟,结果见图3表1。结果表明,LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附数据使用拟二级动力学模型模拟的相关系数更高,这表明限制反应速率的主要步骤为化学吸附[23]

    图 3  接触时间对样品LDHs和Met/LDHs的影响及吸附动力学
    Figure 3.  Effect of contact time on LDHs and Met/LDHs and adsorption kinetics
    表 1  吸附动力学参数
    Table 1.  Adsorption kinetic parameters
    吸附剂吸附质拟一级动力学参数拟二级动力学参数
    qek1R2qek2R2
    LDHsSb(V)17.5810.650.978 518.091.260.993 6
    Met/LDHsSb(V)24.758.790.979 825.590.680.997 0
    LDHsAs(V)35.366.580.991 036.370.350.995 9
    Met/LDHsAs(V)39.176.630.967 940.460.300.989 5
     | Show Table
    DownLoad: CSV

    在不同起始浓度条件下的实验研究了LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附等温式,并用Langmuir及Freundlich模型对实验数据进行了拟合,结果如图4表2所示。结果表明,LDHs和Met/LDHs对Sb(Ⅴ)的吸附数据用Langmuir等温线模型拟合相关系数更高,表明改性前后的吸附剂对Sb(Ⅴ)的吸附均为单分子层吸附;而对As(Ⅴ)的吸附行为更为适用Freundlich等温线模型描述,表明他们对As(Ⅴ)的去除可能是物理和化学吸附综合作用的结果。根据Langmuir等温线模型的拟合结果,甲硫氨酸改性后水滑石对Sb(Ⅴ)和As(Ⅴ)的最大吸附量分别由改性前的44.32 mg∙g−1和64.23 mg∙g−1提升至66.23 mg∙g−1和67.20 mg∙g−1,说明Met/LDHs具有更强的对污染物的去除能力。对比其他类型材料的吸附量可以发现,Met/LDHs对Sb(Ⅴ)的最大吸附量高于针铁矿(0.186 mg∙g−1)和高岭石(59 mg∙g−1),对As(Ⅴ)的最大吸附量高于纳米磁铁矿(13.2 mg∙g−1)和人造沸石(35.8 mg∙g−1)[24-25]

    图 4  吸附质的初始浓度对样品LDHs和Met/LDHs的影响吸附等温线
    Figure 4.  Adsorption isotherms of LDHs and Met/LDHs to adsorbent
    表 2  吸附等温线参数
    Table 2.  Adsorption isotherm parameters
    吸附剂吸附质Langmuir等温线参数Freundlich等温线参数
    qmKLR2nKFR2
    LDHsSb(V)44.320.0200.964 02.012.800.895 3
    Met/LDHsSb(V)66.230.0220.962 42.084.780.936 2
    LDHsAs(V)64.230.0580.775 93.4314.360.975 4
    Met/LDHsAs(V)67.200.0740.820 13.5016.150.988 3
     | Show Table
    DownLoad: CSV

    污染体系初始pH与Sb(Ⅴ)和As(Ⅴ)形态及吸附剂表面电性密切相关,因此重点研究了pH对Met/LDHs对Sb(Ⅴ)和As(Ⅴ)吸附行为的影响。由图5(a)可知,在初始pH为3时,Met/LDHs对Sb(Ⅴ)的吸附量最大,这可能是由于吸附剂表面发生质子化,产生大量正电荷,对Sb(OH)6有较强的静电吸引作用;在pH为4~10范围内,其吸附量略有降低,可归因于溶液中OH与吸附质之间的竞争作用,此外,由于Met/LDHs具有良好的pH缓冲作用且Sb(Ⅴ)的存在形态稳定[26],使得其吸附量在此区间保持稳定;在pH为3~7时,其对As(Ⅴ)的吸附量变化与Sb(Ⅴ)相似,而当pH>7时,As(Ⅴ)主要以HAsO42-的形式存在[27],与去质子化表面存在较强的静电排斥作用,导致其吸附量显著降低。吸附剂表面的电性对污染物的去除有重要影响。Met/LDHs对Sb(Ⅴ)和As(Ⅴ)吸附前后的Zeta电位变化如图5(b)所示,分析发现,在Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)后,等电点(pHPZC)从9.4分别降低至4.38和4.05。有研究表明[27],当吸附质以内球表面络合的形式被吸附时,与吸附剂表面的羟基结合成键,才会导致pHPZC发生变化。据此推测Met/LDHs可能与Sb(Ⅴ)、 As(Ⅴ)之间形成络合物。

    图 5  初始pH对Met/LDHs吸附Sb(V)、As(V)的影响及样品的Zeta电位
    Figure 5.  Effect of initial pH on the adsorption of Sb(V) and As(V) by Met/LDHs and zeta potential of samples

    鉴于在实际废水中已经发现Sb(Ⅴ)和As(Ⅴ)有共存情况,故设计二者共存的模拟体系进行Met/LDHs吸附性能的研究,结果如图6(a)~(b)和表3所示。由图6(a)~(b)可知,在分别含有10 mg∙L−1和50 mg∙L−1的As(Ⅴ)体系中,Met/LDHs对Sb(Ⅴ)的最大吸附量将分别降低至46.11 mg∙g−1和42.09 mg∙g−1;然而,当溶液中共存一定浓度Sb(Ⅴ)时,Met/LDHs对As(Ⅴ)的吸附效果保持稳定。说明Met/LDHs倾向于优先吸附As(Ⅴ)。这可能是由于As(Ⅴ)的离子半径更小,易与Met/LDHs发生层间阴离子交换,这与吸附动力学中所得结论一致[28]

    图 6  共存体系中样品Met/LDHs对Sb(V)和As(V)的吸附等温线
    Figure 6.  Adsorption isotherms of Sb(V) and As(V) by Met/LDHs in the coexisting system
    表 3  共存体系中的Langmuir吸附等温线参数
    Table 3.  Langmuir adsorption isotherm parameters in the coexisting system
    处理离子浓度/(mg∙L−1)掺入离子浓度/(mg∙L−1)Langmuir等温线参数
    qmKLR2
    Sb(Ⅴ)/(0~200)As(Ⅴ)/066.230.0220.962 4
    As(Ⅴ)/1046.110.0140.956 5
    As(Ⅴ)/5042.090.0070.980 9
    As(Ⅴ)/(0~200)Sb(Ⅴ)/067.200.0740.820 1
    Sb(Ⅴ)/1068.470.0830.853 2
    Sb(Ⅴ)/5067.500.0880.799 0
     | Show Table
    DownLoad: CSV

    为了进一步探究Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)的重复利用的性能,进行了5次解吸循环实验结果如图7所示。结果表明,在经过第2次循环后,Met/LDHs对Sb(Ⅴ)、As(Ⅴ)的去除率分别降低了41.4%、37.5%,并在后几次的吸附-解吸循环中,去除率保持稳定。这可能是由于经过Met/LDHs吸附后,部分Sb(Ⅴ)和As(Ⅴ)能够牢固地附着在吸附剂上,难以被解吸释放,随着吸附位点的减少,导致后续循环过程中去除率的降低。若Sb(Ⅴ)和As(Ⅴ)仅通过物理吸附或表面静电作用被Met/LDHs去除,则吸附质的选择性较小,容易被释放到溶液中[29]。由此,可以推断Met/LDHs与Sb(Ⅴ)和As(Ⅴ)之间存在一些化学作用[30]

    图 7  样品Met/LDHs对Sb(V)和As(V)的吸附-解吸循环
    Figure 7.  Adsorption-desorption cycles of Sb(V) and As(V) by Met/LDHs

    为了更深入分析Met/LDHs去除污染物的作用机理,本文首先对比了其吸附Sb(Ⅴ)和As(Ⅴ)前后的XRD图谱。如图8(a)所示,Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)后仍具备典型类水滑石特征峰,表明其结构并未受到破坏。然而,吸附Sb(Ⅴ)和As(Ⅴ)后Met/LDHs基底间距值d003由0.801 nm分别减小到0.777 nm和0.786 nm,表明这2种污染物可能与层间阴离子发生交换而被去除[31-32]。此外,由图8(b)可见,Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)后其中羟基对应伸缩振动峰由3 432 cm−1减小到3 417 cm−1和3 406 cm−1,弯曲振动峰从1 624 cm−1偏移至1 632 cm−1和1 632 cm−1。说明吸附剂中的羟基可能与Sb(Ⅴ)和As(Ⅴ)之间存在氢键作用[33]。而且,位于1 384 cm−1处硝酸根的伸缩振动峰强度明显减弱[34-35],表明Sb(Ⅴ)和As(Ⅴ)与Met/LDHs层间的硝酸根之间发生了离子交换,这与XRD分析结果相对应。另外,在Met/LDHs吸附As(Ⅴ)后,856 cm−1附近出现新的吸收峰,其对应于As—O[36],说明As(Ⅴ)与Met/LDHs之间可能发生内球表面络合反应[37]。而在吸附Sb(Ⅴ)后,FTIR谱图中无法区分特定的Sb—O吸收峰,这可能是由于Met/LDHs层板中的M—O晶格振动与Sb—O的振动峰重合而不易区别[38]。处于437~587 cm−1内的振动峰未发生明显变化,表明在Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附过程中,其主体层板没有改变。

    图 8  样品Met/LDHs吸附Sb(V)、As(V)前后XRD和FTIR表征的变化
    Figure 8.  Changes of XRD and FTIR characteristics before and after Sb(V) and As(V) adsorption by Met/LDHs

    Met/LDHs吸附Sb(Ⅴ)、As(Ⅴ)前后的高分辨C1s XPS图谱如图9(a)~(c)所示。由图9(a)~(c)可知,位于284.7 eV处的—C—C特征峰在吸附前后未发生位移。这说明吸附过程没有改变甲硫氨酸的主碳链的碳原子的化学状态;在吸附Sb(Ⅴ)、As(Ⅴ)后,结合能为285.6 eV对应的—C—S特征峰偏移了0.5 eV和0.6 eV,说明—C—S中碳原子周围电子密度改变。这可归因于Sb(Ⅴ)和As(Ⅴ)与—C—S之间的氢键作用[22]。与此同时,—C=O的结合能均增加了0.4 eV,表明其化学环境发生变化。这可能是由于—C=O中氧原子上的电子转移到了Sb(OH)6或H2AsO4的羟基中形成氢键[39-40]图9(d)为Met/LDHs吸附Sb(Ⅴ)、As(Ⅴ)前后Fe2p高分辨XPS图谱。如图9(d)所示,在吸附Sb(Ⅴ)、As(Ⅴ)后,Fe2p的特征峰均向更低电子结合能方向移动。结合FTIR分析结果推测,这可能是因为Sb(Ⅴ)或As(Ⅴ)与Met/LDHs中的Fe原子发生了内球表面络合反应[26, 41]。综上所述,推测Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附主要包括层间阴离子交换、氢键作用以及内球表面络合反应。

    图 9  样品Met/LDHs吸附Sb(V)、As(V)前后的XPS图谱
    Figure 9.  XPS spectra of Met/LDHs before and after adsorption of Sb(V) and As(V)

    1)本研究通过共沉淀法成功将甲硫氨酸插入水滑石层间,得到具有羧基和甲巯基等基团的Met/LDHs吸附剂。

    2) Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附动力学符合拟二级动力学模型,对Sb(Ⅴ)的吸附数据更加符合Langmuir模型,对于As(Ⅴ)的吸附数据更适合用Freundlich等温线模型。在Sb(Ⅴ)和As(Ⅴ)的二元体系中,Sb(Ⅴ)和As(Ⅴ)之间存在竞争吸附去除,Met/LDHs会优先吸附离子半径更小的As(Ⅴ)。

    3)第1次经NaOH解吸后的Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的去除率分别降低了41.4%和37.5%,但后续循环利用去除率稳定,说明在第1次吸附后有一部分Sb(Ⅴ)和As(Ⅴ)通过化学作用牢固附着在Met/LDHs上。

    4) Met/LDHs对Sb(Ⅴ)和As(Ⅴ)去除主要依靠层间阴离子交换、氢键作用以及内球表面络合反应。由此可见,甲硫氨酸改性镁铁水滑石可以提升对Sb(Ⅴ)和As(Ⅴ)去除率,具有良好的应用前景。

  • 图 1  新型高温好氧堆肥器设计图及实体图

    Figure 1.  Illustration and stereogram of new high-temperature aerobic composting device

    图 2  鸡粪谷壳物料在新型高温好氧堆肥器中堆肥过程中形貌图变化

    Figure 2.  Changes of chicken manure and rice chaff morphology during composting in new high-temperature aerobic composting device

    图 3  鸡粪谷壳粉堆肥过程中堆体温度、水分及pH变化

    Figure 3.  Change of temperature, moisture and pH in chicken manure and rice chaff during composting

    图 4  鸡粪谷壳高温好氧堆肥过程中种子发芽率的变化

    Figure 4.  Change of germination rate seed during high temperature aerobic composting of chicken manure and rice chaff

    图 5  堆肥过程中的微生物情况

    Figure 5.  Microorganism in composting process

    图 6  不同肥料条件栽培下30 d空心菜生长情况对比

    Figure 6.  Comparison of growth of water spinach for 30 d under different fertilizer conditions

    图 7  不同肥料条件栽培下30 d空心菜鲜重和可溶性糖含量的对比

    Figure 7.  Comparison of fresh weight and soluble sugar content of water spinach for 30 d under different fertilizer conditions

    图 8  MAP对小白菜生长情况的影响

    Figure 8.  Effect of magnesium ammonium phosphate (MAP) on growth of Chinese cabbage

    表 1  鸡粪和谷壳的化学特性

    Table 1.  Chemical properties of chicken manure and rice chaff

    供试原料碳/%氮/%碳氮比含水量/%pH
    鸡粪18.87±0.951.51±0.1412.49±0.3240.34±1.248.82±0.52
    谷壳41.00±2.34<0.30>13610.23±0.58
    供试原料碳/%氮/%碳氮比含水量/%pH
    鸡粪18.87±0.951.51±0.1412.49±0.3240.34±1.248.82±0.52
    谷壳41.00±2.34<0.30>13610.23±0.58
    下载: 导出CSV

    表 2  物料堆肥期间表观状态的变化

    Table 2.  Changes of apparent state of materials during composting

    堆肥时间/d气味色泽形状
    1粪尿味灰褐色块状
    2臭味较淡灰褐色块状
    5臭味较浓灰褐色粒状
    11臭味强烈褐色粒状
    34臭味较浓褐色球状
    39臭味较淡黑色球状
    40无臭味黑色球状
    堆肥时间/d气味色泽形状
    1粪尿味灰褐色块状
    2臭味较淡灰褐色块状
    5臭味较浓灰褐色粒状
    11臭味强烈褐色粒状
    34臭味较浓褐色球状
    39臭味较淡黑色球状
    40无臭味黑色球状
    下载: 导出CSV

    表 3  鸡粪谷壳有机肥理化指标和国标的对比

    Table 3.  Comparison of physicochemical indexes of chicken manure-rice chaff organic fertilizer with national standard

    对比项目有机质/%TN/%TP/%TK/%TNPK/%水分/%pH
    鸡粪谷壳有机肥50.53±0.121.86±0.313.27±0.531.57±0.126.71±0.8529.24±0.448.46±0.11
    国标(NY 525-2012)[13]≥45≥5.0≤305.5~8.5
    对比项目有机质/%TN/%TP/%TK/%TNPK/%水分/%pH
    鸡粪谷壳有机肥50.53±0.121.86±0.313.27±0.531.57±0.126.71±0.8529.24±0.448.46±0.11
    国标(NY 525-2012)[13]≥45≥5.0≤305.5~8.5
    下载: 导出CSV
  • [1] 于静, 谷洁, 王小娟, 等. 微生物菌剂对鸡粪堆肥过程中氨气排放和微生物群落的影响[J]. 西北农业学报, 2019, 28(11): 1861-1870.
    [2] 李恕艳, 李吉进, 张邦喜, 等. 菌剂对鸡粪堆肥腐殖质含量品质的影响[J]. 农业工程学报, 2016, 32(S2): 286-274. doi: 10.11975/j.issn.1002-6819.2016.16.039
    [3] 李玥, 李成成, 李静, 等. 鸡粪除臭菌的分离筛选及除臭效果分析[J]. 农业环境科学学报, 2020, 39(5): 1103-1110. doi: 12.1347.s.20200215.1620.006
    [4] 曹云, 黄红英, 钱玉婷, 等. 超高温预处理装置及其促进鸡粪稻秸好氧堆肥腐熟效果[J]. 农业工程学报, 2017, 33(13): 243-250. doi: 10.11975/j.issn.1002-6819.2017.13.032
    [5] PENG S, LI H J, XU Q Q, et al. Addition of zeolite and superphosphate to windrow composting of chicken manure improves fertilizer efficiency and reduces greenhouse gas emission[J]. Environmental Science and Pollution Research International, 2019, 26(36): 36845-36856. doi: 10.1007/s11356-019-06544-6
    [6] CHEN H Y, AWASTHI SANJEEV K, LIU T, et al. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting[J]. Journal of Hazardous Materials, 2020, 389: 121908. doi: 10.1016/j.jhazmat.2019.121908
    [7] REN X Y, ZENG G M, TANG L, et al. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation[J]. Waste Management, 2018, 72: 138-149. doi: 10.1016/j.wasman.2017.11.032
    [8] 霍凯丽, 常瑞雪, 李彦明, 等. 辣椒秸秆快速高温好氧堆肥工艺研究[J]. 中国蔬菜, 2019(2): 58-62.
    [9] LI R, LI L Z, HUANG R, et al. Variations of culturable thermophilic microbe numbers and bacterial communities during the thermophilic phase of composting[J]. World Journal of Microbiology and Biotechnology, 2014, 30: 1737-1746. doi: 10.1007/s11274-013-1593-9
    [10] 王玉新, 任勇翔, 王晓昌, 等. 塔式自然通风好氧堆肥反应器的开发与应用[J]. 环境工程学报, 2014, 8(4): 1631-1636.
    [11] 沈玉君, 张朋月, 孟海波, 等. 通风方式对猪粪堆肥主要臭气物质控制的影响研究[J]. 农业工程学报, 2019, 35(7): 203-209. doi: 10.11975/j.issn.1002-6819.2019.04.025
    [12] 陈志平, 章序文. 搅拌与混合设备设计选用手册[M]. 北京: 化学工业出版社, 2004.
    [13] 中华人民共和国农业部. 有机肥料: NY525-2012[S]. 北京: 中国标准出版社, 2012.
    [14] JIN E T, CAO L P, XIANG S Y, et al. Feasibility of using pretreated swine wastewater for production of water spinach (Ipomoea aquatic Forsk.) in a hydroponic system[J]. Agricultural Water Management, 2020, 228: 105856. doi: 10.1016/j.agwat.2019.105856
    [15] 谷思玉, 蔡海森, 闫立龙, 等. 鸡粪与稻壳好氧堆肥的不同C/N研究[J]. 东北农业大学学报, 2015, 4: 51-58. doi: 10.3969/j.issn.1005-9369.2015.08.009
    [16] YANG X, LIU E K, ZHU X M, et al. Impact of composting methods on nitrogen retention and losses during dairy manure composting[J]. International Journal of Environmental Research and Public Health, 2019, 16(18): 3324. doi: 10.3390/ijerph16183324
    [17] VILLAR I, ALVES D, GARRIDO J, et al. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste[J]. Waste Management, 2016, 54: 83-92. doi: 10.1016/j.wasman.2016.05.011
    [18] REN LM, SCHUCHARDT F, SHEN Y J, et al. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk[J]. Waste Management, 2010, 30: 885-892. doi: 10.1016/j.wasman.2009.08.006
    [19] LI R H, WANG J J, ZHANG Z Q, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368. doi: 10.1016/j.biortech.2012.06.065
    [20] LI X, ZHANG R, PANG Y. Characteristics of dairy manure composting with rice straw[J]. Bioresource Technology, 2008, 99: 359-367. doi: 10.1016/j.biortech.2006.12.009
    [21] LIANG C, DAS K C, MCCLENDON R W. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend[J]. Bioresource Technology, 2003, 86: 131-137. doi: 10.1016/S0960-8524(02)00153-0
    [22] AWASTHI M K, WANG Q, REN X N, et al. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting[J]. Bioresource Technology, 2016, 219: 270-280. doi: 10.1016/j.biortech.2016.07.128
    [23] 黄雅楠, 王晓慧, 曹琦, 等. 高通量测序技术分析猪粪堆肥过程中微生物群落结构变化[J]. 微生物学杂志, 2018, 38(5): 21-26. doi: 10.3969/j.issn.1005-7021.2018.02.004
    [24] CAO L P, WANG J J, ZHOU T, et al. Evaluation of ammonia recovery from swine wastewater via a innovative spraying technology[J]. Bioresource Technology, 2019, 272: 235-240. doi: 10.1016/j.biortech.2018.10.021
    [25] 任丽梅, 李国学, 沈玉君, 等. 鸟粪石结晶反应在猪粪和玉米秸秆堆肥中的应用[J]. 环境科学, 2009, 30(7): 2165-2173. doi: 10.3321/j.issn:0250-3301.2009.07.049
    [26] COLE J C, SMITH M W, PENN C J, et al. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants[J]. Scientia Horticulture, 2016, 211: 420-430. doi: 10.1016/j.scienta.2016.09.028
  • 期刊类型引用(6)

    1. 张文博,余香英,薛弘涛,刘晋涛,蒋婧媛,熊津晶. 基于APCS-MLR模型的九洲江广东段不同水期水质变化特征及污染来源解析. 农业环境科学学报. 2024(02): 401-410 . 百度学术
    2. 毛禹,夏军强,周美蓉,邓珊珊. 近20年长江中游监利—汉口河段氮、磷负荷时空变化特征分析. 环境科学. 2024(09): 5204-5213 . 百度学术
    3. 卜思凡,余香英,张文博,熊津晶,吴华财,潘文兴. 基于PMF模型的粤西典型流域氨氮污染特征分析. 环境保护科学. 2024(06): 104-109 . 百度学术
    4. 黄燏,阙思思,罗晗郁,蒋晖. 长江流域重点断面水质时空变异特征及污染源解析. 环境工程学报. 2023(08): 2468-2483 . 本站查看
    5. 薛弘涛,余香英,陈晓丹,许泽婷. 深圳河口溶解氧变化规律及其影响因素研究. 环境生态学. 2023(11): 88-94 . 百度学术
    6. 张悦. 近海流域溶解氧的影响因素分析. 中国资源综合利用. 2023(11): 111-113 . 百度学术

    其他类型引用(5)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 10.7 %DOWNLOAD: 10.7 %HTML全文: 79.5 %HTML全文: 79.5 %摘要: 9.8 %摘要: 9.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.0 %其他: 99.0 %XX: 0.7 %XX: 0.7 %北京: 0.1 %北京: 0.1 %南通: 0.1 %南通: 0.1 %福州: 0.1 %福州: 0.1 %酒泉: 0.1 %酒泉: 0.1 %其他XX北京南通福州酒泉Highcharts.com
图( 8) 表( 3)
计量
  • 文章访问数:  6876
  • HTML全文浏览数:  6876
  • PDF下载数:  76
  • 施引文献:  11
出版历程
  • 收稿日期:  2020-08-12
  • 录用日期:  2020-10-23
  • 刊出日期:  2021-03-10
晏琛, 曹雷鹏, 刘玉环, 阮榕生, 宁武建, 刘晓成, 李锐. 利用新型高温好氧堆肥器提高鸡粪谷壳有机肥肥效[J]. 环境工程学报, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103
引用本文: 晏琛, 曹雷鹏, 刘玉环, 阮榕生, 宁武建, 刘晓成, 李锐. 利用新型高温好氧堆肥器提高鸡粪谷壳有机肥肥效[J]. 环境工程学报, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103
YAN Chen, CAO Leipeng, LIU Yuhuan, RUAN Rongsheng, NING Wujian, LIU Xiaocheng, LI Rui. Effect of new high temperature aerobic composting device on maturation of chicken manure and rice chaff[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103
Citation: YAN Chen, CAO Leipeng, LIU Yuhuan, RUAN Rongsheng, NING Wujian, LIU Xiaocheng, LI Rui. Effect of new high temperature aerobic composting device on maturation of chicken manure and rice chaff[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1103-1111. doi: 10.12030/j.cjee.202008103

利用新型高温好氧堆肥器提高鸡粪谷壳有机肥肥效

    通讯作者: 曹雷鹏(1986—),男,博士,助理研究员。研究方向:食品及农业废弃物资源化利用。E-mail:caoleipeng2@163.com
    作者简介: 晏琛(1996—),男,硕士研究生。研究方向:食品(含生物质)资源高效转化与利用。E-mail:1475399596@qq.com
  • 1. 南昌大学食品科学与技术国家重点实验室,生物质转化教育部工程研究中心,南昌 330047
  • 2. 明尼苏达大学生物制品与生物系统工程系,圣保罗市 55108,美国
  • 3. 江西天韵农业开发股份有限公司,南昌 330052
基金项目:
国家自然科学基金资助项目(21466022,21878139);南昌大学食品科学与技术国家重点实验室自由探索项目(SKLF-ZZB-201915)

摘要: 针对传统堆肥器存在堆肥时间长、环境污染严重等问题,开发快速、无臭、环保型堆肥器对促进粪污肥料化具有重要意义。研发的新型高温好氧堆肥器主要包括4个部分:控制面板、发酵罐(50 L有效容积)、空压机通风系统(0.15 m3·s−1排气量和40 L气容量)、氨气吸收系统(188 L容积及内部成阶梯环形吸收模式)。利用新型高温好氧堆肥器对鸡粪谷壳进行堆肥处理,并采用盆栽实验探明鸡粪谷壳有机肥和回收的磷酸铵镁(MAP)的肥效。结果表明,鸡粪谷壳物料(C/N=25)在在新型高温好氧堆肥器中堆肥处理40 d后,可形成黑色无臭味、圆球状及无有害菌群的堆肥产物;且所得产物中营养成分含量分别为50.53%有机质、1.86% TN、1.56% TP(P2O5)及1.59% TK(K2O),其指标均达到了国家有机肥料标准(NY 525-2012)。盆栽实验表明,以施肥后空心菜的产量及多糖含量为肥效指标,施用鸡粪谷壳堆肥产物的肥效高于施用化肥获得的肥效;而且,通过氨吸收塔回收氨气产生的MAP可有效提高堆肥产物的整体肥效。该研究结果可为新型高温好氧堆肥器的技术优化提供参考。

English Abstract

  • 近年来,畜禽养殖过程中产生的大量粪污引起了严重的环境污染,已严重阻碍了畜禽养殖业的可持续发展[1-2]。未经处理的畜禽粪污富含致病菌且成分不稳定,在储存过程中会释放大量甲硫醇、氨气、硫化氢和丙烯醛等10多种恶臭有毒还原性气体,严重危及人畜健康[3-4]。然而,畜禽粪污作为一种富含氮、磷、钾等营养物质的有机固体废物,又是可用于促进农作物生长的重要肥料资源[5-6]。堆肥技术主要是通过微生物对畜禽粪污中不稳定的有机物质进行降解,生成稳定的腐殖质类物质,从而将其转化为高价值有机肥料,实现畜禽粪污的资源化利用[7-8]。畜禽粪污堆肥处理不仅可以解决环境污染问题,而且所得的肥料有助于改善土壤环境、提高土壤肥力,对实现畜禽业及农业可持续发展具有重要意义[9]

    好氧堆肥法可有效地脱臭及灭菌,有利于肥料的养分保持,是我国畜禽粪便处理的主要方式。然而,现有的好氧堆肥反应器在堆肥过程中存在非自动化、物料腐熟度差异大、控温困难、氮损失严重等缺陷,限制了好氧堆肥反应器的广泛应用[10-11]。因此,加快低成本、环保型、高效自动化堆肥反应器的开发,对促进畜禽粪污肥料化应用尤为重要。

    本研究采用可调控式新型高温好氧堆肥器,以谷壳(粉)作为堆肥辅料,分析鸡粪谷壳在堆肥过程中的理化性质,并利用吸收塔将堆肥过程中释放的氨气转化为磷酸铵镁(MAP),再添加至鸡粪谷壳有机肥料中,从而生产出优质商品有机缓释肥料。

  • 鸡粪和谷壳原料化学特性见表1。堆肥菌种为自筛选获得的以嗜热好氧纤维素分解菌为主体的堆肥混合菌群,主要包括真菌、放线菌、耐热芽孢杆菌等菌种,活菌总数大于20×108个·g−1

  • 新型高温好氧堆肥器主要由控制面板、发酵罐、空压机通风系统、气体吸收塔等4个部分组成(图1)。其中,控制面板用于控制堆肥器内物料的温度及发酵罐的搅拌频率,同时显示堆肥器湿度。发酵罐总容积设计为75 L,根据《搅拌与混合设备设计选用手册》[12]中反应罐有效容积计算,有效容积为50 L。发酵桶为圆柱体桶装结构(Ф60 cm×40 cm),采用旋转式搅拌。空压机通风系统采用入功率0.37 W、输出转速5~25 r·min−1。气体吸收塔的容积为188 L,塔内装有Ф25 mm的塑料阶梯环填料,用于吸收堆肥发酵过程逸出的氨气,以镁盐沉淀剂转化为磷酸铵镁(MAP)。塔式发酵罐的容量为30 L,运行物料容量为20 L,罐体内部用聚氨酯作保温层,罐体采用全封闭式,发酵产生的废气经处理系统处理后,直接排出罐外。采用涡轮上翻搅拌及液压驱动,以保证罐体内腐熟物满载荷运行。

  • 本实验采用鸡粪和谷壳粉按C/N=25混合,再用去离子水调节混合物料水分含量至60%,并搅拌混匀得堆肥物料,最后添加菌剂于堆肥反应器中进行发酵反应。塔式发酵罐进行的实验堆料高度为50 cm、物料重20 kg、堆肥时间40 d。新型堆肥器处理物料50 kg,每48 h自动搅拌1次,每次5 min,总堆肥时间为40 d。采用五点取样法采集堆肥样品,分别采集了第0、1、2、5、7、9、11、34、39、40 d的样品,每份取样50 g装于自封袋中密封,并于4 ℃条件下保存。

  • 1)鸡粪谷壳有机肥料有效性评估。取12个花盆(25 cm×20 cm),分为空白组、化肥组(尿素46% TN)和鸡粪谷壳有机肥(以下简称“有机肥”)组,每组4盆,每盆约3 kg土壤,种植15粒空心菜种子。空白组不添加肥料;化肥组在土壤中添加3.88 g尿素(与有机肥组等量的含氮量计算得出);有机肥组在土壤中添加鸡粪谷壳经新型堆肥器堆肥40 d后产生的100 g肥料(1.86 g TN、3.27 g TP、1.57 g TK)。花盆置于户外种植,每日浇水1次,每7 d进行1次大水量灌溉,发芽后栽培30 d采收。

    2)MAP肥料有效性评估。采用盆栽实验评估新型堆肥系统回收氨气产生MAP的肥效性。盆栽实验设4个处理组:T1为对照组(不施肥)、T2为有机肥组、T3为有机肥+MAP组(有机肥和MAP各占50%)、T4为MAP组。各处理组的TN含量相同,每组3盆,每盆约3 kg土壤,种植10粒小白菜种子。空白组不添加肥料;其他组每盆按1 kg土壤添加0.5 gTN计算添加肥料的量。待种子发芽后,每盆保留6~8株生长相近的幼苗进行后期分析。

  • 1)气味、色泽及形状评估。采用感官评估法,每次5人对样品进行样品气味、色泽及形状进行评估。其中,气味评估主要包含粪尿味、臭味较淡、臭味较浓、臭味强烈、无臭5个等级;色泽主要包含灰褐色、褐色、黑色3个等级;样品形状主要有块状、粒状及球状3个等级。

    2)温度及pH测定。每天测定肥堆上、中、下3个层次的温度,计算平均值并记录室温;将新鲜堆肥样品与水按1∶10(质量体积比)比例混合振荡2 h,上清液测定pH。

    3)化学成分测定、种子发芽率测定和16S rRNA序列分析。总碳、总氮、水分含量、钾含量测定方法参考文献[13];可溶性糖测定参考文献[14];种子发芽率(GI)的测定参考文献[15];16S rRNA序列分析参考文献[16]。

  • 根据图2表2可知,随着堆肥化的进程,堆体表观发生了显著的变化。堆体颜色由最初的灰褐色逐渐转变成黑褐色,由局部的黏稠状逐渐转变为疏松且具有一定结构的状态。此外,随着堆肥时间的延长,鸡粪有机肥料的臭气味逐渐消失,最后无臭味(表2)。该现象产生的主要原因可能是,微生物降解有机物产生的硫化物及叠氮化物等引起的,之后随着微生物逐渐死亡,使得臭气味消失。物料在反应器中连续发酵40 d后,堆体由灰褐色的块状逐渐变成黑色的圆球状(图2)。在堆肥过程中,堆体表观状态的变化,符合典型腐熟堆肥的情况。

  • 温度是监测堆肥过程性能的主要参数之一。堆肥的热量是微生物通过降解有机物质,在促进自身生长的同时产生的。由图3(a)可知,新型堆肥器和塔式发酵罐中堆体的温度变化趋势主要分为3个阶段。第1阶段为快速升温期,由起始温度升至峰值温度。新型堆肥器和塔式发酵罐中堆体温度均从第5天开始快速升温,分别在第9、11天达到峰值温度,其峰值温度分别为63.2 ℃、52.8 ℃。在堆肥前期,好氧微生物可快速分解物料中的可降解有机物并释放能量,使得堆肥温度急剧升高[16-17]。新型堆肥器在堆肥过程中对物料进行了适当的滚筒式翻动,这有利于微生物的扩繁增殖和氧气的传输,从而提高好氧微生物的活性、物料中有机物的降解速率及能量的释放,因此,新型堆肥器中的堆体升温速率高于塔式发酵罐。第2阶段为缓慢降温期,即堆体中峰值温度缓慢下降至略高于室温的时期。新型堆肥器中堆体温度下降速度低于塔式发酵罐中的堆体。新型堆肥器和塔式发酵罐中堆体的降温期分别需要30及25 d左右。堆体中有机物含量不足,微生物活性及释放热量的下降,导致温度逐渐降低。此外,由于新型堆肥器具有较好的保温效果,因此,堆体温度下降速度较慢。新型堆肥器中堆体温度在第7~30天保持在50 ℃以上,共23 d,符合高温堆肥的要求(GB 7959-1987)。第3阶段为腐熟期,堆肥40 d后,新型堆肥器和塔式发酵罐中的堆体温度几乎与室温保持一致,无法继续往下降,因此,可以认定堆肥反应基本结束。

    由于水分含量的高低与微生物活性和温度密切相关,鸡粪谷壳粉堆肥过程保持在适当的水分含量,可有效提高堆肥的效果。堆肥的最佳初始含水量一般在55%~65%,此含水量能够为微生物提供合适的湿度环境[18-19]。因此,在本实验中,鸡粪谷壳的水分含量控制在60%左右。在鸡粪谷壳粉堆肥过程中,水分含量呈现逐渐下降的趋势。由图3(b)可知,堆肥11 d后,新型堆肥器中的物料水分含量由60%逐渐下降到50%,而塔式发酵罐中物料水分由60%下降到40%,经40 d堆肥之后分别降低至29.24%和26%。堆肥过程中物料水分下降的主要原因是,在微生物分解有机质、消耗水分及堆肥过程中,不间断的通气搅拌导致了水分的损失[20-21]。新型堆肥器中,物料中水分损失速率低于塔式发酵罐。这主要是由于:1)在新型堆肥器中散状的物料经过不间断的通气和搅拌结成圆球状阻碍了水分蒸发,而塔式发酵罐中的原料在堆肥过程中是处于散状的;2)在新型堆肥器是一个相对密闭的装置可有效防止水分蒸发,而塔式发酵罐是自然通风且比表面积较大,因而加速了水分的挥发。

    图3(c)可知,新型堆肥器中物料的pH由8.02逐渐增加至8.65,之后下降至8.51,呈现先上升后下降的趋势;而塔式发酵罐中的物料pH也呈现类似的变化,但变化幅度低于新型堆肥器。在新型堆肥器中,堆体温度较高,嗜热微生物代谢蛋白质,导致氨氮的不断产生,最终使得pH持续升高,并且高于塔式发酵罐中的物料pH[22]。而在后期,因物料结构过于致密导致孔隙度过小,不能为微生物提供足够的含氮有机物和O2,造成局部厌氧而导致有机酸积累,最终导致pH降低。

  • 种子发芽率是评价堆肥腐熟度和植物毒性的重要生物学指标。一般认为,当种子发芽率(GI)达到50%时,病原菌基本被消灭,肥料对植物无毒害影响;如果GI值超过80%则认为堆肥完全腐熟,对植物没有毒性[16]。据图4显示,随着堆肥化的进行,新型堆肥器和塔式发酵罐所得的肥料GI值呈现先增加后保持稳定的趋势。鸡粪谷壳在新型堆肥器处理11 d后,其GI值达到80%左右,可以认为堆肥完全腐熟,之后保持稳定。采用塔式发酵罐堆肥处理24 d后,GI值仅为60%左右,之后保持稳定。表3显示了鸡粪谷壳在新型堆肥器中处理40 d后所得有机肥的主要理化特性。结果显示,鸡粪谷壳有机肥中含有50.53%有机质、1.86%总氮(TN)、3.27%总磷(TP)及1.57%总钾(TK),且无有害菌群,基本达到中华人民共和国农业行业有机肥料标准(NY 525-2012)[13]

  • 通过高通量测序技术所扩增的16S rDNA V4区域特点,分析了鸡粪谷壳在新型堆肥器中高温好氧发酵过程中3个关键性温度阶段细菌群落多样性变化。图5(a)显示了样品升温期、高温期、降温期在属分类水平上最大丰度排名前10的菌种。在升温期,Olivibacter属、Sphingobacterium属的相对丰富度高于高温期和降温期,这2个菌属均具有降解芳香族化合物功能,可有效降解物料中的纤维素及半纤维素;在进入高温期,随着温度的升高和营养物质的消耗,大量嗜温细菌进入休眠或死亡状态,Oceanisphaera属、Ulvibacter属、Luteimonas属、Paenalcaligenes属等嗜热微生物的相对丰富值逐渐提高,有利于纤维素及木质素等有机物的进一步降解。放线菌的丰度增加为堆肥腐熟度的一个标志[23],在降温期,Paucisalibacillus属、Sporosarcina属、Corynebacterium属于放线菌门的系列,其相对丰度值逐渐升高,这表明堆肥物料基本上已经腐熟。

    在粪污有机肥发酵中,由于大肠杆菌及沙门氏菌易随流水污染水源,从而间接危害人群和畜禽的健康,因此被作为肥料的安全检测指标。由图5(b)可知,在高温阶段,大肠杆菌和沙门沙门氏菌数量最多;随着堆肥的进行,2种菌的数量快速下降。可见,在高温堆肥过程中,大肠杆菌和沙门氏菌逐渐被消灭。随着堆肥的进行,部分不适宜在堆肥中生存的菌群逐渐优胜劣汰;新型堆肥器在堆肥过程中可以杀灭有害微生物,达到畜禽粪污无害化处理,以保证有机肥料的安全性。

  • 图6显示了空心菜经过鸡粪谷壳有机肥、化肥和对照盆栽实验30 d后的生长情况。可以看出,盆栽30 d后,有机肥组的株高明显高于化肥组和对照组。通过对空心菜地上可食部分鲜重的分析发现,对照组及化肥组的平均鲜重分别为2.52和3.26 g,而有机肥组空心菜的平均鲜重为4.36 g,分别比对照组和化肥组增加了42.20%和25.22%。通过图7可知,施加有机肥栽培的空心菜其鲜重和可溶性糖含量均明显高于空白对照组与化肥组,这表明有机肥的施加对空心菜的生长与养分积累起到了促进作用。

  • 图8显示了不同施肥条件下小白菜的生长情况,可见,新型高温好氧堆肥器回收氨气产生的MAP对盆栽小白菜株高和湿重的提高均有促进作用。结果显示,经过30 d的生长,小白菜的株高在T3组比T2组提高了120%;T4组的也比T2组的提高了40%左右。经过30 d的生长,T3组小白菜地上部分平均湿重为6.02 g,比T2组(4.18 g)和T4组(5.24 g)分别提高了44.02%和14.89%。MAP具有较好的缓释性,若用MAP代替部分氮肥,能有效减少土壤氮素淋洗的损失,从而减少温室气体(NH3)排放,并能起到有缓解土壤酸化等作用。有报道指出,MAP的氮素淋洗损失显著低于尿素,而且其N2O的释放量能够减少75%以上,可为植株的生长提供更为持久的有效养分[24-26]

  • 1)新型高温好氧堆肥装置可以回收堆肥过程中释放的氨气,形成的MAP可作为肥料。

    2)鸡粪谷壳混合物(C/N=25)在新型堆肥器堆肥处理40 d后,可形成黑色无臭味、无有害菌群、圆球状的有机肥,其养分基本达到我国有机肥料标准(NY 525-2012)。

    3)鸡粪谷壳有机肥能够缓慢并稳定地释放氮磷钾等植物生长所需的营养元素,有利于空心菜对营养物的吸收;新型堆肥器回收氨气产生的MPA添加至鸡粪谷壳有机肥中,可进一步提高有机肥的整体肥效。

参考文献 (26)

返回顶部

目录

/

返回文章
返回