Processing math: 100%

气浮与沉淀切换运行的新型气浮-沉淀工艺设计和工程应用

徐晓然, 唐曾晖, 李振兴, 李俊义, 周午阳, 孙志民. 气浮与沉淀切换运行的新型气浮-沉淀工艺设计和工程应用[J]. 环境工程学报, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162
引用本文: 徐晓然, 唐曾晖, 李振兴, 李俊义, 周午阳, 孙志民. 气浮与沉淀切换运行的新型气浮-沉淀工艺设计和工程应用[J]. 环境工程学报, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162
XU Xiaoran, TANG Zenghui, LI Zhenxing, LI Junyi, ZHOU Wuyang, SUN Zhimin. Design and engineering application of the integrated flotation and sedimentation unit[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162
Citation: XU Xiaoran, TANG Zenghui, LI Zhenxing, LI Junyi, ZHOU Wuyang, SUN Zhimin. Design and engineering application of the integrated flotation and sedimentation unit[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162

气浮与沉淀切换运行的新型气浮-沉淀工艺设计和工程应用

    作者简介: 徐晓然(1986—),男,硕士,高级工程师。研究方向:给水处理与水污染控制。E-mail:xuxr001@126.com
    通讯作者: 孙志民(1959—),男,博士,研究员。研究方向:给水排水设计与科研。E-mail:1426754080@qq.com
  • 基金项目:
    国家自然科学基金面上项目(50678041);广东省省部产学研合作专项(2012B091000055)
  • 中图分类号: TU991

Design and engineering application of the integrated flotation and sedimentation unit

    Corresponding author: SUN Zhimin, 1426754080@qq.com
  • 摘要: 当水体中藻类含量高、浊度低时,所形成的絮体沉淀性不好,沉淀工艺处理效果差,但气浮工艺处理效果相对较好;而当原水浊度高时,气浮工艺处理效果差,而沉淀工艺处理效果却很好。为解决季节性水源水质变化对供水生产的影响,结合上述2种工艺特点,在给水工程中设置同时包含气浮和沉淀工艺的构筑物,开发出新型气浮-沉淀工艺。该工艺的构造可满足2种工艺运行要求,亦可根据水源水质在同一构筑物内切换气浮或沉淀运行模式,能节省用地和建设成本。珠海三灶水厂改造工程项目(处理量2×104 m3·d−1)即该工艺的技术应用案例,其生产运行结果表明:当运行气浮模式时,平均除藻率可达96.9%,平均除浊率可达94.1%;当运行沉淀模式时,除浊率为98.5%。
  • 20世纪50年代后,工业的发展和人类生活条件的改善得到不断推进,同时也制造了很多化学污染物,加剧了水资源的污染。开采业、农业、畜牧业、食品加工业、印染业 、医疗产业和城市生活垃圾渗透液等都产生了大量、复杂、有毒、持久性的和难去除的污染物,这些污染物通过废水、污水进入了地表水源或者地下水,破坏了生态环境[1-4]。治理水污染,使废水、污水能够再利用,提高水资源利用效率是解决水资源匮乏、保护生态环境的重要途径。电化学技术是通过在特定的电化学反应器中外加电场调控电子定向转移,使水中污染物在反应器中发生特定的物理、化学反应,从而被去除的过程。包括电氧化、电还原、电渗析、电絮凝、电吸附、电气浮、内电解和电芬顿等常用技术。相对传统处理方法,用电化学处理水污染有着可避免二次污染、可深度并有选择性的去除污染物、处理条件温和易实现自动化和规模化、且可与其他处理方法相结合,形成降解能力强的复合处理工艺等优点。还可以有效地回收污水、废水中的金属离子、营养物质、硫、氢和化合物,使废水资源化。电化学技术已经成为目前处理污水、废水的优选技术[5-6]

    本研究对电化学水处理相关的SCI期刊论文进行检索和分析,总结电化学水处理领域的国际论文的发文特点和趋势,揭示该领域的研究前沿发展方向,以期为科研人员的研究规划和国际合作提供科学支撑。

    数据来源于科睿唯安(Clarivate Analytics)的Web of Science核心合集的SCI数据库(SCI-Expanded,http://apps.webofknowledge.com)。检索时间为2021年5月,检索年限为2011~2020年。经查重后获得4 177条数据,检索结果见表1。 以主题做为检索字段,以电化学技术和污水、废水处理为检索式进行检索,得到结果最多、最为全面,为3 767条。通过进一步限制检索范围,分别检索电化学处理技术在工业废水、农业废水、城市废水和医疗废水中的应用频率[7] ,结果显示,用电化学技术处理工业废水的应用更为频繁和广泛,检索出1 479条。电化学水处理技术在农业、畜牧业污水的处理中应用面不大,只检索到90条数据。该技术在处理城市生活污水和医疗废水中也有一定的应用,分别检索到349和196条数据。

    表 1  SCI收录电化学水处理文献检索结果
    检索内容和检索式检索结果
    电化学技术在水处理中的应用TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro*......) and TS=(“*water* *treatment*” or “*water* purif*” or “*water* cleans*”......)2 034
    电化学技术处理污水、废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or .......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “contaminat* water*” or.......) and TS=(*treatment or purif* or cleans* or remov* or disinfect* or steriliz* or remediat*......)3 767
    电化学技术处理工业废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* flocculat*" or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or ......) and TS=(Industr* or metallurg* or produc* petrochemical or petroleum or “natural gas” or desalinat* or ......)1 479
    电化学技术处理农业、畜牧业废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro* coagulat*"or ......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or......)and TS= (agricultur* or farmland or rural or pesticide* slaughterhouse*or ......)90
    电化学技术处理医疗废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* coagulat*"or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(municipal* or domestic* or sanitary)196
    电化学技术处理生活污水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* coagulat*" ...... and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(hospital or medic* or pharmac*or......)349
    合计8 232
    查重4 177
     | Show Table
    DownLoad: CSV

    根据Web of Science的检索结果,2011~2020这10年间,在电化学处理水污染的方面,全球共发文4 177篇,见图1。总发文量由2011年的204篇增长到2020年768篇,呈逐年递增的趋势。

    图 1  电化学水处理领域全球发文量及趋势

    发文量最多的前10的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其,共3 111篇,占总发文量的74.45%。其中,中国1 626篇,明显领先于其他国家,占全球总发文量的38.93%,尤其2019和2020年发文量占到全球的近1/2。其他9国发文量也呈逐年上升的趋势,特别是近5年发文量逐年增加,见表2

    表 2  10年内电化学处理水污染相关文章全球及Top10国发文量分析
    t/a中国印度西班牙美国巴西伊朗墨西哥韩国加拿大土耳其合计中国所占比例/%
    2011621211171072123121519030
    2012671221151091115121018229
    20138316179118192113920633
    2014923314231351311131122831
    20151302329162111191112627834
    201616625212420121277329740
    2017189282325201511119934038
    20182172938312416887538340
    201926935332830216511544346
    20203516538323423456656446
    合计1 626278245220193127124117102793 111
     | Show Table
    DownLoad: CSV

    用知识图谱可视化软件VOSviewer分析全球发文国家的合作关系,见图2。与People r China合作关系较为紧密的有Japan、Singapore、Danmark、SSweden等国家。与USA存在合作关系的国家较多,除了与Australia合作较多,还有很多亚洲国家,如India、South Korea、Vietnam、Thailand等国家及Taiwan Province of China。Sapain与Brazil、Mexcio、Colombia、Chile的合作更为紧密。另外,Canada、France、Mocrocco等也存在广泛的合作关系。而Iran、Turkey、Germany、Portugal、Greece等国家也组成了一个合作小组。

    图 2  电化学水处理领域全球发文国家合作关系

    基于Web of Science的学科分类,电化学水处理方面的研究主要涉及环境科学和生态学、工程和化学等领域,见表3。其中,环境科学和生态学领域以及工程领域的发文量超过总发文量的10%,分别为15.3%和13.3%。环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域的发文总和占有全部发文量的一半以上。另外,电化学水污染的研究在工程-水资源、工程-环境科学和生态-水资源、化学-工程、农业-生物技术和微生物应用-能源和燃料、化学-电化学这些领域的发文量也占有一定的份额,大约占总发文量的20.2%。

    表 3  电化学水处理在不同研究领域发文数量及所占比例
    研究领域发文数量所占比例/%
    环境科学和生态学 640 15.3
    工程学 555 13.3
    电化学 382 9.1
    化学 365 8.7
    工程;环境科学与生态学 307 7.3
    工程;水资源 246 5.9
    工程;环境科学与生态学;水资源 234 5.6
    化学;工程学 151 3.6
    农业;生物技术与应用微生物学;能源与燃料 114 2.7
    化学;电化学 99 2.4
    其他 1 084 26.0
     | Show Table
    DownLoad: CSV

    为了揭示研究现状和前沿,本文对2019和2020年的发文提取关键词,并用VOSviewer对关键词进行聚类分析,见图3。小球越大表示此关键词出现的次数越多,小球之间的连线表示两关键词间存在一定相关性。2019~2020年,根据发文关键词的数量多少及相关性,可将全球的研究区分为4个群组。研究热点分别为红色群组的“吸附”“氧化”“水溶液”等;绿色群组的“性能”“微生物电解槽”“除磷”等;蓝色群组的“降解”“电化学氧化”“掺硼金刚石(电极)”等;黄色群组的“去除”“电絮凝”“酸性”等。

    图 3  2019~2020年电化学水处理领域关键词聚类分析

    进一步对关键词群组进行分析,总结每个群组研究主要内容、使用的技术和去除的主要污染物,以及所关注的技术要点和参数,见表4

    表 4  2019~2020年电化学处理水污染相关文章研究方向及技术要点
    群组研究方向使用技术去除污染物技术要点和参数
    红色海水淡化,饮用水,地下水电氧化,吸附,电还原,电沉积重金属,六价铬,亚甲蓝,纳米颗粒,硝酸盐,亚硝酸盐,氮动力学,电极,活性炭,催化剂,石墨烯,碳纳米管,能量,电容去离子,传感器
    绿色污水污泥,活性污泥降解,电解,零价铁,微电解,生物降解氨,有机质,磷酸盐性能,微生物电解槽,反应器,酸碱度,温度,膜生物反应器,微生物群落,发电
    蓝色个人护理产品,药品,抗生素降解,电化学氧化,阳极氧化,光催化降解,臭氧氧化,电芬顿抗生素,偶氮染料,双酚A,有机污染物,磺胺甲恶唑,过硫酸盐掺硼金刚石,矿化作用,毒性,双氧水,羟基自由基,降解途径,BDD阳极
    黄色垃圾渗滤液电絮凝,电化学降解染料,苯酚,污染物,合成有机染料酸性,活性氯,阳极,表征,COD,能源消耗,二氧化铅电极,响应面法
     | Show Table
    DownLoad: CSV

    为了更近一步预测研究趋势和应用范围,对2019和2020年被引频次>20次的发文,剔除广泛性和普遍性使用的关键词后再次进行聚类分析,见图4。红色小球表示个人护理产品和药品,绿色小球表示污水污泥,黄色小球表示海水淡化和地下水,紫色小球表示垃圾渗滤液和饮用水,这几方面仍然是近年的主要研究方向。而主要污染物的去除将会集中在抗生素(包括四环素)、微生物污染物、苯酚、金属铬及六价铬、双酚A和残留农药等方面。在微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

    图 4  2019~2020年电化学水处理领域被引频次﹥20次关键词聚类分析

    2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。超过半数的文章发表于Top20期刊,见表5。Top20期刊中发文量﹥100的有10个刊,发文量占全部发文量的35.8%。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2020年影响因子为13.273,5年影响因子为11.629。Top20影响因子最高的刊是Applied Catalysis B-Environmental,2020年影响因子为19.503,5年影响因子为17.995。

    表 5  电化学处理水污染相关文章全球Top20期刊发文量
    期刊发文量/篇2020 IF5年IF
    Chemical Engineering Journal22213.27311.629
    Chemosphere1907.0866.451
    Electrochimica Acta1746.9016.385
    Desalination And Water Treatment1571.2541.027
    Journal Of Hazardous Materials14810.5889.608
    Separation And Purification Technology1407.3126.437
    Water Research12711.23610.177
    Environmental Science And Pollution Research1164.2233.509
    Bioresource Technology1129.6427.820
    International Journal Of Electrochemical Science1091.7651.366
    Journal Of Electroanalytical Chemistry834.4644.105
    Water Science And Technology791.9151.796
    Science Of The Total Environment777.9636.938
    International Journal Of Hydrogen Energy735.8164.063
    Environmental Science & Technology729.0288.079
    Rsc Advances713.3613.206
    Environmental Technology643.2472.880
    Applied Catalysis B-Environmental5819.50317.995
    Journal Of Environmental Management516.7896.393
    Journal Of Environmental Chemical Engineering485.9095.361
     | Show Table
    DownLoad: CSV

    对比了发文量Top10国家的发文期刊平均影响因子,见图5,发文期刊平均影响因子超过5.0的国家有5个。其中最高的是美国,平均IF为6.82。其次是西班牙,也达到了6.23。另外IF>5的国家分别为韩国5.71、中国5.36和加拿大5.21。说明这些国家的整体发文质量较高。通过对比发文量Top10国家文章被引次数H指数,H指数最高的国家为中国,为65,其次为美国49,西班牙45。另外,印度和巴西的H指数也超过了30,分别为38和30。总体来说,中国的发文量和H指数为全球第一,表明全球科研影响力最大。但美国和西班牙发文质量较高,对科研的贡献较大。

    图 5  电化学水处理领域Top10国家发文量和影响力分析

    (1)2011~2020年,电化学水处理领域的全球发文量明显呈逐年上升的趋势,说明全世界越来越多的国家和地区都在关注并应用这项目前处理水污染的优选技术。发文量最多的前十的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其。涵盖亚洲(尤其是东亚和南亚一代)、欧洲、北美洲、南美洲4个大洲,并且这些国家间也有很多直接、间接的合作。说明这项技术在这些地域应用领域更为广泛,技术也更为成熟。

    (2)2011~2020年,电化学水处理领域全球发文量最多的国家是中国,占全球发文量的近40%。这与我国多年来一直坚持以环境保护为基本国策,各级政府都重视环境保护、逐渐加大环境保护方面的技术研发和生产投入力度有关。特别是2018年《中共中央 国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》的提出,更是进一步促进了水污染领域研究成果的产出,2019和2020年,中国的发文量占全球发文量的1/2。

    (3)2011~2020年,电化学水处理领域的发文超过一半集中在环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域。主要研究涉及海水淡化、饮用水、地下水、污水污泥、活性污泥、个人护理产品、药品和垃圾渗滤液等方面;技术手段较常用的有电氧化、电还原、电絮凝、电吸附和微电解等;去除的污染物有重金属、硝酸盐、磷酸盐、有机污染物、染料和抗生素等。今后的研究中,微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

    (4)2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2019年影响因子为10.652,5年影响因子为9.42。对比了发文量Top10国家的发文期刊平均影响因子和H指数来评估各个国家的科研实力和影响力,结果显示中国的发文量和H指数为全球第一,全球科研影响力最大。但美国和西班牙发文期刊影响因子总体较高,说明这两国的科学技术更为先进,对学术的贡献较大。

  • 图 1  侧向流斜板浮沉池造示意图

    Figure 1.  Schematic diagram of the structure of Side flow inclined plate flotation and sedimentation unit

    图 2  新型气浮-沉淀池构造示意图

    Figure 2.  Schematic diagram of the structure of IFSU

    图 3  新型气浮-沉淀池运行气浮工艺示意图

    Figure 3.  Schematic diagram of the air floatation process of IFSU

    图 4  新型气浮-沉淀池运行沉淀工艺示意图

    Figure 4.  Schematic diagram of the sedimentation process of IFSU

    图 5  珠海三灶水厂改造工程新型气浮-沉淀工艺构筑物外观

    Figure 5.  Appearance of IFSU in the DWTP of Zhuhai Sanzao

    图 6  珠海三灶水厂改造工程工艺流程图

    Figure 6.  Flow chart of the treatment process of the Zhuhai Sanzao DWTP

    图 7  气浮工艺的除藻效果

    Figure 7.  Result of algae removal in the mode of the air flotation process

    图 8  运行气浮模式除浊效果

    Figure 8.  Result of turbidity removal in the mode of the air flotation process

    图 9  运行沉淀模式除浊效果

    Figure 9.  Result of turbidity removal in the mode of the sedimentation process

    图 10  CODMn处理效果

    Figure 10.  Result of CODMn removal

    图 11  氨氮处理效果

    Figure 11.  Result of NH+4-N removal

    表 1  两种工艺的水厂处理效果对比

    Table 1.  Comparison of algae removal effect of the two treatment processes

    水厂处理规模/(104 m3·d−1)工艺类型进水平均藻含量/(104个·L−1)出水平均藻含量/(104个·L−1)除藻率进水平均浊度/NTU出水平均浊度/NTU除浊率
    济南玉清水厂[13-14]20平流沉淀串联气浮工艺4742195.6%5.340.2395.69%
    珠海三灶水厂2新型气浮-沉淀工艺940~7 79832~11296.6%~98.6%5.12~2200.37~3.0092.8%~98.6%
    水厂处理规模/(104 m3·d−1)工艺类型进水平均藻含量/(104个·L−1)出水平均藻含量/(104个·L−1)除藻率进水平均浊度/NTU出水平均浊度/NTU除浊率
    济南玉清水厂[13-14]20平流沉淀串联气浮工艺4742195.6%5.340.2395.69%
    珠海三灶水厂2新型气浮-沉淀工艺940~7 79832~11296.6%~98.6%5.12~2200.37~3.0092.8%~98.6%
    下载: 导出CSV
  • [1] 孙志民, 李至时, 陈淑勤, 等. 侧向流斜板浮沉固液分离方法及装置: CN92104174.8[P]. 1998-03-18.
    [2] 李至时, 孙志民, 陈树勤. 侧向流斜板浮沉池[J]. 给水排水, 1993, 29(2): 6-9.
    [3] 王成. 侧向流斜板浮沉池的排泥改造[J]. 城镇供水, 2000(4): 20-21.
    [4] 孟凡良, 崔福义, 许占祥. 浮沉池技术在大庆石化总厂给水处理中的应用[J]. 哈尔滨商业大学学报(自然科学版), 2003, 19(5): 553-556.
    [5] 郭星庚. 三明市日产50000米3浮沉池设计运行初探[J]. 福建建设科技, 1998(2): 30-31.
    [6] 孙志民. 新型气浮-沉淀固液分离工艺及中试研究[D]. 哈尔滨: 哈尔滨工业大学, 2003.
    [7] 孙志民, 张锐坚, 徐晓然, 等. 水处理用气浮与沉淀固液分离装置: CN201721916936.4[P]. 2018-11-02.
    [8] ZHANG R J, SUN Z M, CUI B. Improvement on algae and turbidity removal in an integrated flotationand sedimentation unit using side flow-inclined plate settlers: Evidence from a full-scale field experiment[J]. Journal of Water Supply Research and Technology-Aqua, 2018, 67: 84-98. doi: 10.2166/aqua.2017.082
    [9] 孙志民, 张锐坚, 唐曾晖, 等. 新型气浮-沉淀工艺[M]. 北京: 中国林业出版社, 2017.
    [10] LI L, SUN Z, ZHANG R. Numerical simulation of sedimentation processes in a novel air flotation-sedimentation tank[J]. Journal of Water Process Engineering, 2017, 18: 41-46. doi: 10.1016/j.jwpe.2017.05.006
    [11] 孙志民, 丛宝华. 气浮与沉淀填料装置: CN2865823[P]. 2007-02-07.
    [12] 关继海, 徐景颖, 韩超. 侧向流斜板浮沉池的设计[J]. 给水排水, 1999, 35(5): 36-38.
    [13] 贾瑞宝, 宋武昌, 刘衍波, 等. 高藻引黄水库水常规工艺强化集成技术研究与示范[J]. 给水排水, 2012, 48(11): 27-33.
    [14] 李浩, 贾瑞宝, 李世俊. 济南玉清水厂强化常规处理工艺改造设计及运行分析[J]. 中国给水排水, 2012, 28(14): 90-93. doi: 10.3969/j.issn.1000-4602.2012.14.024
    [15] 徐晓然, 孙志民. 新型气浮-沉淀工艺建设经济性研究[J]. 广东化工, 2015, 42(8): 138-141. doi: 10.3969/j.issn.1007-1865.2015.08.064
  • 加载中
图( 11) 表( 1)
计量
  • 文章访问数:  6971
  • HTML全文浏览数:  6971
  • PDF下载数:  157
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-01-26
  • 录用日期:  2021-02-22
  • 刊出日期:  2021-03-10
徐晓然, 唐曾晖, 李振兴, 李俊义, 周午阳, 孙志民. 气浮与沉淀切换运行的新型气浮-沉淀工艺设计和工程应用[J]. 环境工程学报, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162
引用本文: 徐晓然, 唐曾晖, 李振兴, 李俊义, 周午阳, 孙志民. 气浮与沉淀切换运行的新型气浮-沉淀工艺设计和工程应用[J]. 环境工程学报, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162
XU Xiaoran, TANG Zenghui, LI Zhenxing, LI Junyi, ZHOU Wuyang, SUN Zhimin. Design and engineering application of the integrated flotation and sedimentation unit[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162
Citation: XU Xiaoran, TANG Zenghui, LI Zhenxing, LI Junyi, ZHOU Wuyang, SUN Zhimin. Design and engineering application of the integrated flotation and sedimentation unit[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 791-798. doi: 10.12030/j.cjee.202101162

气浮与沉淀切换运行的新型气浮-沉淀工艺设计和工程应用

    通讯作者: 孙志民(1959—),男,博士,研究员。研究方向:给水排水设计与科研。E-mail:1426754080@qq.com
    作者简介: 徐晓然(1986—),男,硕士,高级工程师。研究方向:给水处理与水污染控制。E-mail:xuxr001@126.com
  • 广州市市政工程设计研究总院有限公司,广州 510060
基金项目:
国家自然科学基金面上项目(50678041);广东省省部产学研合作专项(2012B091000055)

摘要: 当水体中藻类含量高、浊度低时,所形成的絮体沉淀性不好,沉淀工艺处理效果差,但气浮工艺处理效果相对较好;而当原水浊度高时,气浮工艺处理效果差,而沉淀工艺处理效果却很好。为解决季节性水源水质变化对供水生产的影响,结合上述2种工艺特点,在给水工程中设置同时包含气浮和沉淀工艺的构筑物,开发出新型气浮-沉淀工艺。该工艺的构造可满足2种工艺运行要求,亦可根据水源水质在同一构筑物内切换气浮或沉淀运行模式,能节省用地和建设成本。珠海三灶水厂改造工程项目(处理量2×104 m3·d−1)即该工艺的技术应用案例,其生产运行结果表明:当运行气浮模式时,平均除藻率可达96.9%,平均除浊率可达94.1%;当运行沉淀模式时,除浊率为98.5%。

English Abstract

  • 受气候和人类活动的影响,许多饮用水水源的水质存在季节性变化,呈现出春季和秋季藻类含量高、冬季浊度低、夏季汛期浊度高的特征。给水生产中常见的沉淀工艺能有效处理浊度较高的原水,但当原水藻类含量较高或低温低浊时,除藻除浊效果较差;另一方面,气浮工艺可有效处理藻含量较高或低温低浊的原水,但当原水浊度较高时,除浊效果较差。因此,给水生产中需同时建设气浮和沉淀2种工艺的构筑物,以应对受季节影响较大的水源水处理。

    为节省用地和建设成本,孙志民等[1]将气浮工艺和沉淀工艺耦合在一个构筑物内,形成侧向流斜板浮沉池。该工艺已成功应用于自吉林市第一水厂(2×104 m3·d−1)[2]、吉林市第四水厂二期(4.5×104 m3·d−1)[2]、新疆库尔勒市自来水公司水厂(3×104 m3·d−1)[3]、大庆石化总厂水气厂生活水厂(2.04×104 m3·d−1)[4]、三明市下洋水厂二期(5×104 m3·d−1)[5]等给水厂。然而,随着侧向流斜板浮沉池的深入应用,其构造上的一些缺陷暴露出来[6-7]:原本考虑兼顾气浮与沉淀出水要求,共用一个出水集水系统,而出水流态表明,气浮在底部集水、沉淀在顶部集水才能保证出水颗粒物最少、出水水质最优;原本考虑采用多折斜板结构,以便增加斜板面积,提高侧向流斜板的沉淀效率,但实际运行时,斜板折叠处积泥严重,不仅影响斜板沉淀排泥,而且对絮体颗粒上浮形成阻碍,影响浮渣形成;原本考虑底部采用穿孔管排泥,使系统实现均匀排泥,故设置较矮的集泥区,而长期运行中穿孔管的排泥效果较差,池体底部积泥较多;而又因集泥区高度较矮,气浮接触区挡墙高度不足,导致溶气水与絮体颗粒接触时间不足,影响了气浮对絮体颗粒的去除效果。

    为解决上述问题,在侧向流斜板浮沉池的基础上,重新构建池体结构、优化布置,形成基于气浮与沉淀切换运行的新型气浮-沉淀工艺。本文剖析新型工艺的原理、运行方式和设计要点,并以珠海三灶水厂(2×104 m3·d−1)的升级改造工程为应用案例,评估该工艺的生产运行状况,以期为给水厂应对水源水质的季节性变化提供参考。

  • 为减少传统侧向流斜板浮沉池(图1)暴露出的缺陷,改进池体结构、优化布置,形成新型气浮-沉淀工艺(图2)。工艺优化的内容包括:1)分别设置独立的气浮和沉淀出水集水系统,以保证气浮和沉淀出水的最优水力条件,气浮和沉淀不同模式时单独出水、互不干扰,保证出水水质稳定;2)采用单折结构斜板,以减轻运行沉淀工艺时斜板的积泥程度、优化运行气浮工艺时的水力条件;3)设置机械刮泥结构和装置,用以提高排泥效率,避免因池底部积泥引起的水质恶化问题;4)增加接触区挡墙高度,使溶气水与絮体颗粒充分接触,形成状态良好的浮渣,有利于气浮出水的水质提升。

  • 气浮模式的运行条件:1)运行沉淀工艺处理效果较差,从而影响供水水质时;2)对供水水质要求提高时;3)在春秋季节原水藻含量较高(>3×106个·L−1)或浊度较低(<40 NTU)时。沉淀模式的运行条件:1)当运行气浮工艺处理效果较差,从而影响供水水质时;2)考虑节省运行电费、操作简单时;3)在夏季暴雨原水浊度较高(≥40 NTU)时[8]

  • 气浮模式工艺(图3)中,絮凝后的水流经配水穿孔花墙后进入接触区,与溶气释放器注入的溶气水充分混合[9];溶气水释放的微小气泡与原水中的絮凝体等颗粒充分黏附,形成微气泡与絮凝体的聚集体颗粒,即带气絮粒;颗粒随水流向上漂浮,一部分上浮至水面形成浮渣,一部分进入侧向流斜板模组内,沿斜板滑动上浮至水面形成浮渣;刮渣机定期将水面浮渣刮至排渣槽排出;杂质颗粒上浮分离后,澄清的水沿斜板缝隙流向池底部,经过气浮穿孔集水管进入气浮出水渠,并通过气浮出水管流入滤池[10]

  • 沉淀模式工艺(图4)中絮凝后的水流经配水穿孔花墙后进入接触区,然后进入侧向流斜板模组;进入模组后,絮凝体等杂质颗粒沉降到斜板上,沿斜板下滑至积泥区,由刮泥机刮至集泥斗后,通过管道排出;絮凝体等杂质颗粒沉淀分离后,澄清的水沿斜板缝隙流出侧向流斜板模组,经过上部末端的沉淀出水穿孔花墙,依次进入沉淀集水槽、沉淀出水渠,最后通过沉淀出水管流入滤池。

  • 1)进出水设计要点:①为减少絮凝体破碎,进水配水穿孔花墙过孔流速宜小于0.1 m·s−1;②为保证配水均匀,同时降低沿程水头损失,气浮穿孔集水管内流速不宜超过0.5 m·s−1;③为避免沉淀后絮凝颗粒被带出,沉淀出水穿孔花墙水流速度宜小于0.1 m·s−1;④为应对处理水量的波动,沉淀出水集水槽溢流率不宜超过200 m3·(m·d)−1

    2)气浮模式工艺设计要点:①为使释放器在最佳性能范围内运行,溶气压力宜采用0.3~0.45 MPa;为实现气浮工艺运行的经济性,回流比宜选取8%~10%;②为保证溶气水与絮体颗粒物有足够的接触时间,形成形态较好的带气絮粒,气浮接触区水流上升速度宜采用10~20 mm·s−1,接触区内停留时间不宜少于60 s;③为保障气浮工艺具有较强的抗冲击负荷能力,分离区表面负荷率宜为2.88~5.4 m3·(m2·h)−1;④为提高气浮溶气效率,压力溶气罐宜采用阶梯环为填料,填料层高度宜采用1.0~1.5 m,罐高度宜为2.5~3.5 m[11];⑤为实现出水水质和工程投资之间较好的平衡,气浮分离区的长度宜采用15~20 m。

    3)沉淀模式工艺设计要点:①考虑到水库水絮体沉降速度较小,颗粒沉降速度μ宜采用0.8~0.15 mm·s−1,斜板间水流流速v宜采用5~10 mm·s−1;②考虑到应对水质和水量的冲击,斜板需保证一定的富余量,有效系数η宜选用0.7~0.8;③综合考虑不同水质情况下斜板的处理效果,侧向流斜板(气浮与沉淀填料装置)模组,斜板倾斜角宜采用50°~60°、斜板间距宜采用50~80 mm[12];④为实现最优水力条件,应在侧向流斜板(气浮与沉淀填料装置)模组底部设置阻流墙、进出处设置缓冲区;⑤为确保排泥效果,宜采用刮泥机排出沉淀污泥;为确保排渣效果,宜采用刮渣机排除气浮浮渣。

  • 本研究中,以珠海三灶水厂改造作为工程应用实例,评估新型气浮-沉淀工艺的运行效果及建设成本。该厂原采用重力式单阀滤池直接过滤工艺,但随着原水水质的变化和国家饮用水标准的提高,其出厂水质已不能满足供水水质要求。经过多次论证,改造主体工艺确定为新型气浮-沉淀工艺(见图5)。水厂净水工艺流程见图6,改造后的处理规模为2×104 m3·d−1

  • 珠海三灶水厂原水为水库水。水质特点为:春秋季节藻类高、浊度低;冬季浊度低;夏季暴雨导致浊度高;春秋与冬季铁锰高。当春秋季节原水藻类高、浊度低,或者浊度低、运行沉淀工艺处理效果较差,影响供水水质时,则切换运行气浮工艺,以满足供水水质要求;当夏季降雨或暴雨、原水浊度较高,气浮工艺运行效果差影响供水水质时,则切换运行沉淀工艺,以满足供水水质要求;另外,采用锰砂滤料滤池,解决原水铁锰含量高问题。改造后的工艺处理效果如下文所述。

  • 当原水藻含量超过3×106个·L−1时,运行气浮模式,溶气压力0.35~0.4 MPa,回流比8%。由图7数据可知,系统运行较为稳定,进水藻含量为940×104~7 798×104个·L−1,出水藻含量为32×104~112×104个·L−1,除藻率为94.70%~99.14%,锰砂滤料V型滤池滤后水藻含量9.61×104~25.98×104个·L−1

  • 当原水浊度低于40 NTU时,运行气浮模式除浊,溶气压力0.35~0.4 MPa,回流比8%。由图8可知,系统运行较为稳定,进水浊度5.12~24.50 NTU,出水平均浊度为0.5 NTU,除浊率为90.23%~97.95%,锰砂滤料V型滤池滤后水浊度为0.03~0.14 NTU。

    当进水浊度高于40 NTU时,尤其当汛期时原水浊度急剧升高时,则运行沉淀模式。由图9数据可知,系统运行较为稳定,进水浊度174~220 NTU,出水平均浊度为3 NTU,除浊率为98.36%~98.60%,锰砂滤料V型滤池滤后水浊度小于0.5 NTU。

  • 在系统运行气浮和沉淀2种模式时,分别监测了进出水中的高锰酸盐指数。该指标可反映系统对有机物的去除效果。运行气浮模式时(见图10(a)),进水CODMn为2.45~7.04 mg·L−1,出水CODMn为1.26~3.00 mg·L−1,CODMn去除率为29.49%~72.35%。运行沉淀模式时(见图10(b)),进水CODMn为2~7.22 mg·L−1,出水CODMn为1.3~4.3 mg·L−1,CODMn去除率为18.1%~72.35%。运行结果表明,气浮模式对CODMn的去除效果比沉淀工艺模式更加稳定。

  • 在系统分别运行气浮和沉淀2种模式时,监测了进出水的氨氮含量。该指标可反映系统对引起水体富营养化的有机物去除效果。运行气浮模式时(见图11(a)),进水氨氮含量为0.02~0.34 mg·L−1,出水氨氮含量0~0.06 mg·L−1,氨氮去除率为82.35%~100%;运行沉淀模式时(见图11(b)),进水氨氮含量为0.03~1.15 mg·L−1,出水氨氮含量为0~0.49 mg·L−1,氨氮去除率为44.58%~100%。运行结果表明,气浮模式对氨氮的去除效果比沉淀模式稳定。

  • 济南玉清水厂与珠海三灶水厂的源水特征比较类似。两个水厂源水均为水库水,常年低浊,藻类、有机物、嗅味物质呈季节性升高[13-14]表1为珠海三灶水厂与济南玉清水厂的除藻、除浊效果对比。通过对比类似水源水质的同类型工艺处理效果可知,运行新型气浮-沉淀工艺,藻类去除率不低于95%,浊度去除率不低于92%,与沉淀串联气浮工艺的处理效果相当。土建费用方面,在相同规模(2×104 m3·d−1)下,同时实现气浮与沉淀2种工艺,新型气浮-沉淀池所需的占地面积最少,仅为309 m2;而“絮凝+平流沉淀+气浮”组合池的占地面积为713 m2,是新型气浮-沉淀池的2.31倍[15]。通过对比可知,在保证相同处理效果的前提下,新型气浮-沉淀工艺可减少用地面积,降低工程造价,还可减少构筑物的闲置。

  • 新型气浮-沉淀工艺经过多年的发展,已在全国多地应用,主要有珠海三灶水厂(2×104 m3·d−1)、中山长坑水库水厂(0.6×104 m3·d−1)、韶关市演山水厂(在建,6×104 m3·d−1)、廉江市九洲江水厂(在建,10×104 m3·d−1)。新型气浮-沉淀工艺相比原侧向流斜板浮沉池工艺,改进了出水集水系统、斜板结构及布置方式、刮泥方式和接触区高度。珠海三灶水厂的生产运行实践表明,新型气浮-沉淀工艺对于地表水源水季节性水质变化适应性较强,在除藻和除浊方面均表现出较高的去除效率,同时占地面积较小,节约工程造价。

参考文献 (15)

返回顶部

目录

/

返回文章
返回