NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果

徐文英, 高浩阳. NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果[J]. 环境工程学报, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141
引用本文: 徐文英, 高浩阳. NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果[J]. 环境工程学报, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141
XU Wenying, GAO Haoyang. Degradation and decolorization of reactive brilliant red K-2BP in simulated printing and dyeing wastewater by NiOx(OH)y/NaClO catalytic oxidation system[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141
Citation: XU Wenying, GAO Haoyang. Degradation and decolorization of reactive brilliant red K-2BP in simulated printing and dyeing wastewater by NiOx(OH)y/NaClO catalytic oxidation system[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141

NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果

    作者简介: 徐文英(1970—),女,博士,副研究员。研究方向:高级氧化技术。E-mail:xuwy@tongji.edu.cn
    通讯作者: 徐文英, E-mail: xuwy@tongji.edu.cn
  • 基金项目:
    道扬环保科技有限公司,印染废水降解新工艺的开发项目(kh0040020183321)
  • 中图分类号: X703.1

Degradation and decolorization of reactive brilliant red K-2BP in simulated printing and dyeing wastewater by NiOx(OH)y/NaClO catalytic oxidation system

    Corresponding author: XU Wenying, xuwy@tongji.edu.cn
  • 摘要: 采用NaClO和浸渍法制备的小球型复合镍基催化剂NiOx(OH)y/γ-Al2O3组成的体系,对活性艳红K-2BP模拟废水进行了降解脱色的系统研究,探讨了反应条件对脱色率和反应后出水中Ni2+溶出量的影响,分析了染料的降解机理。结果表明:该体系对染料的脱色效果良好,脱色率随着染料浓度的增加而降低,其随着初始pH、有效氯和催化剂投加量的增加而增加;连续流实验中染料的脱色率达到80%以上,在运行至9 000 min时,催化剂没有出现失活现象;原子氧在染料降解过程中起到主导作用。采用SEM和XPS对催化层结构进行了表征,催化层中的化学吸附氧占比先增加后减小,新制备的催化层的化学吸附氧占比为87%;当用过720 min后,其占比增大到91%;经连续流实验运行3 000 min后,其占比降低到83%。本催化体系在印染废水处理中具有一定的应用潜力。
  • 在饮用水处理过程中,氯因其持久氧化性及经济性是目前最为常用的氧化剂和消毒剂。然而,氯与有机物反应会生成多种具有致畸性、致癌性消毒副产物(disinfection by-products,DBPs)。我国《生活饮用水卫生标准》(GB 5749-2022)对三卤甲烷(trihalomethanes,THMs)和卤乙酸(haloacetic acid,HAAs)进行了明确管控。除了已知的包括THMs、HAAs、卤代苯酚、亚硝铵等多种DBPs之外,饮用水中还存在着大量具有较高潜在毒性风险的未知DBPs。

    活性炭(activated carbon,AC)作为一种高效、经济的吸附剂广泛应用于饮用水厂和家用净水过滤系统中[1]。在预处理阶段,粉末活性炭常用于解决突发性微量污染物问题[2]。在净水过滤器中,AC可以作为其吸附剂的主要组分[3]。因此,在预处理阶段或者家用净水器端,AC不可避免的会与氯接触。之前的研究发现[4],AC本身也可与氯反应生成毒性更强的DBPs。且由于AC的催化作用,其可催化次氯酸产生氯自由基(Cl·),导致不同的氯化产物。BULMAN等[5]发现,氯光解过程中形成的多种活性氧化剂会诱导形成新兴的氯化DBPs。VOUDRIAS等[6]也发现AC会促进游离氯氧化酚类物质形成新的副产物。此外,AC作为优良的吸附剂既可以吸附溶解性天然有机物(dissolved organic matter,DOM),也可以吸附生成的DBPs,导致其对DOM氯化过程中DBPs的生成具有复杂的影响效应。因此,深入探究AC对DOM氯化过程中产生DBPs释放风险的影响具有重要意义。

    傅立叶变换离子回旋共振质谱(fourier transform ion cyclotron resonance mass spectrometry,FTICR-MS)是一种高分辨率质谱仪器。为了分析的精确性,其采用较长的采集时间和上百次的谱图叠加[7],用于检测DOM中的分子结构,也可鉴定高分子质量的有机化合物[8-9]。FTICR-MS可通过分子式的元素比率和芳香度信息来分析DOM的组分特征,从而研究DOM与生物、自然介质之间的关系[10]。ZHANG等[11]通过FTICR-MS对不同分子质量DOM馏分的光学和分子特征进行了研究,发现高度不饱和的芳香族物质富含电子,其与次氯酸表现出高反应性。AC氯化后会生成分子质量为1 000~10 000 Da的副产物,但具体的种类及AC对DOM氯化的影响机制还尚未明确。

    因此,本研究通过以是否在氯化过程中投加AC为变量,达到以下目的:1)研究AC对DOM氯化过程中产生已知DBPs的影响,并评价其出水产物毒性;2)通过FTICR-MS技术识别并明确AC对DOM氯化过程中产生的氯化产物种类的影响;3)通过FTICR-MS技术阐明AC对氯化过程中DOM特性转化的影响。

    本研究中使用的DBPs标准品为色谱纯,购自Accu Standard公司(美国);甲基叔丁基醚(methyl tert-butyl ether,MTBE)为色谱纯,购自北京百灵威科技有限公司;无水硫酸钠(Na2SO4)、碳酸氢钠(NaHCO3)、浓硫酸(H2SO4)、硫代硫酸钠(NaS2O3)和次氯酸钠(NaClO)均为分析纯,购自国药集团化学试剂有限公司;AC购自宁夏光华活性炭有限公司,选取椰壳炭的物理性质包括碘值1 030 mg·g−1,比表面积1 114 m2·g−1,平均孔径3.61 nm,总孔隙体积0.78 m2·g−1,微孔和介孔体积分别为0.3 m2·g−1和0.46 m2·g−1;其表面官能团结构包括碱性、酸性、酚醛、羧基和内酯基团的含量为0.58、0.50、0.11、0.38和0.02 mmoL·g−1。AC均用去离子水洗涤至滤液pH呈中性,在115 ℃下干燥12 h后,将其制备成1 g·L−1的悬浊液。原水(raw water,RW)取自中国北京京密引水渠,本研究所用的实验水样参数:pH=8.27,浊度为1.28 NTU,以CaCO3计的碱度和硬度分别为83.38 mg·L−1和111.00 mg·L−1,UV254为0.023 cm−1,溶解性有机碳(dissolved organic carbon,DOC)为2.21 mg·L−1

    将AC悬浊液超声后加入到1 L 0.1 mmol·L−1 NaClO的超纯水和RW中,AC质量浓度为10 mg·L−1,使用10 mmol·L−1磷酸盐缓冲液将溶液的pH调整为7.5,同时设计另一组实验,先使用AC对RW中的DOM进行吸附,再加氯进行反应。磁力搅拌24 h,检测反应0.5、1、2、24 h后水样中THMs和HAAs的浓度,同时对反应24 h的样品进行FTICR-MS分析,使用Na2S2O3淬灭余氯并利用0.45 μm的膜过滤去除AC,滤后水中加入5 g无水Na2SO4,使用MTBE作为萃取剂提取水样,HAAs还需甲醇酸化处理,使其衍化为卤乙酸甲酯,测定DBPs以及其他指标。

    THMs和HAAs的测定参考美国环境保护署标准方法(USEPA Standard Methods 551.1和552.3),THMs和HAAs的回归曲线如图1所示。测定的4种DBPs(TCM、CAA、DCAA、TCAA)采用配备电子捕获检测器(Agilent Technologies,Santa Clara,CA,USA)的气相色谱仪(Agilent 7 890,Santa Clara,USA)进行分析[12]。气相色谱柱为HP-5型的熔融石英毛细管柱(30 mm×0.25 mm内径,薄膜厚度为0.25 mm)。氯化反应开始前的溶液使用pH计(HACHHQ 40 d,Loveland Colorado,USA)校准成中性。余氯使用N,N-二乙基对苯二胺(DPD)方法进行测定,结果以mg·L−1的Cl2表示(HACH Pocket ColorimeterII,Loveland Colorado,USA)。总有机碳分析仪(total organic carbon,TOC,Elementar公司,德国)测定AC滤后水中DOC的浓度。溶液中的有机物含量使用紫外分光光度计(UV-6 100型,中国上海)进行测定。在5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)作为捕获剂的条件下,采用电子自旋共振波谱仪(electron spin resonance,ESR,A300-10/12型Bruker公司,德国)检测自由基。

    图 1  THMs和HAAs的回归曲线
    Figure 1.  Regression curves for THMs and HAAs

    仪器参数与操作步骤使用配备有15.0 T超导磁体和电喷雾电离源的FTICR-MS(Bruker Solari X型)对样品的分子组成进行分析。样品在负离子模式下进行测试,进样方式为连续进样,进样速度为150 μL·h−1,毛细管入口电压为4 kV,离子累积时间为0.08 s,相对分子质量采集范围为100~1 000 Da,采样点数为4 ppm,时域信号叠加300次以提高信噪比.上机测试前用10 mmol·L−1甲酸钠对仪器进行校正,样品检测完成后用可溶性有机质(已知分子式)进行内标校正。经过校正后,检测的质量误差均小于1 ppm。样品检测时取原水样品200 μL,过0.22 μm滤膜以去除颗粒物等杂质,然后用甲酸酸化水样,逐滴加入甲酸直至水样pH调节至2。然后对水样中的DOM进行SPE固相萃取(萃取柱型号为Agilent Bond Elut PPL(1.0 g,6 mL)。H/Cw、O/Cw和碳归一化双键当量(DBE/Cw)等分子式参数根据每个样品中指定分子式的相对强度加权平均值计算得出[13]。数据采用DOM中已知的CHO类化合物进行内标校准,如对应多个分子式,采用同系物规则和最小杂原子个数规则进行正确分子式筛选。

    图2所示,比较了AC是否存在和不同氯化方式对RW氯化过程中DBPs的释放情况。图2(a)所示为测定的DBPs浓度随时间变化规律,可以看到无论是否在RW中加入AC,DBPs浓度均随时间的延长升高,DBPs的总浓度在反应初始时可忽略不计。AC存在与不存在时DBPs的浓度分别从0.5 h的51.29 μg·L−1和103.19 μg·L−1上升至24 h的59.34 μg·L−1和137.87 μg·L−1,并且在2 h时达到较高水平,说明AC与0.1 mmol·L−1 NaClO在开始的2 h内剧烈反应生成大量DBPs。但加入AC的水样随着反应时间的增加,DBPs的变化并不明显,可能是由于部分DBPs及其前体物被AC快速吸附以及自由氯被大量消耗后导致反应速率下降。此外,进一步对比了在RW氯化过程中不同活性炭加入方式对DBPs生成释放的影响,结果如图2(a)所示。发现过滤掉AC后氯化方式产生的DBPs与AC一直存在的结果基本一致,说明AC在此过程中虽然可以吸附THMs、HAAs及其前体物,并且可以催化氯产生自由基,但对释放到水中THMs及HAAs影响较小。如图2(b)所示,在AC存在时,氯的衰减率明显增加,但释放到水体的目标DBPs浓度较未加入AC时更低。AC存在时余氯衰减快,测得DBPs较少。一方面是由于生成的DBPs被AC吸附,另一方面具有较强还原性的AC本身也会快速消耗自由氯。如图2(a)所示,单独在24 h时测定AC吸附的DBPs,发现即使将吸附反应后的AC经有机溶剂丙酮浸泡,并超声处理释放DBPs,测定的4种TCM、CAA、DCAA、TCAA的质量浓度分别为19.85、16.29、12.08、12.50 μg·L−1,可以发现加入AC组的DBPs总质量浓度(120.05 μg·L−1)仍低于不加入AC组(147.87 μg·L−1)。此外,如图3所示,还测定了在纯水中AC与过量氯反应产生的DBPs。发现THMs及HAAs的浓度先下降后上升。这是由于AC前期吸附性较强,后期吸附能力下降,生成的DBPs逐渐释放到水中。同时对水中的DOC进行测定,前2 h的DOC浓度均为先下降后上升,但随着反应时间的继续增加,加入AC组的DOC浓度继续上升,而未加入AC组却呈现下降趋势。这一现象说明AC影响了DOM的氯化过程,导致其结构被破坏且生成了其他副产物。VOUDRIAS等[14]发现AC会导致一系列自由基连锁反应的发生。HUANG等[4]研究了THMs和HAAs在AC存在下的含量变化,但没有研究其单独氯化DOM的情况,而且AC存在时溶液的细胞毒性也有所增强。因此,还需进一步探究AC存在时的氯化副产物的变化。

    图 2  RW氯化过程中,对比是否存在AC、后氯化和24 h AC吸附的目标DBPs浓度和余氯、DOC变化
    Figure 2.  Comparison of target DBPs concentrations and changes in residual chlorine and DOC during RW chlorination in the presence or absence of AC, post-chlorination and 24-hour AC adsorption
    图 3  纯水中AC与过量氯测定的目标DBPs浓度
    Figure 3.  Concentration of target DBPs determined by AC with excess chlorine in pure water

    图4所示,通过FTICR-MS探究了AC对氯化副产物的影响。由图4(a)可以看到,在RW氯化过程中,其产物匹配了302个氯化分子式,而AC存在时的氯化产物中,可对应220个氯化分子式。进一步分析302种氯化产物,其中163种分子式与AC存在时相同,因此AC存在时的氯化会导致部分氯化产物减少,但也生成了新的氯化产物包括57种在内的独特分子式,其中CHOCl、CHONCl、CHOSCl、CHNSCl、CHNOSCl分子式各生成了42、5、5、2、3种。如图4(b)所示,在有AC存在的氯化过程中,氯化副产物产生的含有2个和3个氯原子的DBPs相对较少。在AC存在的氯化水样中,生成含有2个和3个Cl原子的分子式分别为90个和19个;而在RW氯化过程中,生成含有2个和3个Cl原子的分子式为125个和25个。此外,如表1所示,经对比发现,AC存在时,CHOCl、CHONCl、CHONSCl分子式的数量减少,而CHOSCl的分子式增加,并且CHOCl、CHONCl以及CHOSCl和CHONSCl分子式的H/Cw值均低于RW的氯化过程,相反的是O/Cw均高于RW氯化。有研究[15]表明,与传统的暗氯化生成副产物的生成机制不同,活性氯物种(reactive chlorine species,RCS)与有机物的主要反应机理是氯加成、单电子转移和氢抽取反应。BEN等[16]和SUN等[17]发现氯可以通过自由基链式反应发生降解,从而减少自身与其他物质的接触时间。RCS和DOM结合也会影响靶向DBPs的生成,诱导形成新型的DBPs[5],这可能是AC存在时有Cl·的生成,从而发生的后续自由基反应导致H/Cw值较低、O/Cw较高。

    图 4  AC在RW氯化过程后形成氯化副产物的范克雷维伦图和该过程中形成的含氯副产物的计数
    Figure 4.  Van Krevelen diagram of the formation of chlorination by-products of AC after the RW chlorination process and the counting of chlorine-containing by-products neutral to the process
    表 1  RW氯化过程中的氯化产物分子式分子指数的强度加权平均值
    Table 1.  Intensity-weighted average of molecular indices of molecular formulae for chlorination products during the RW chlorination process
    分子式 水样 H/CW O/CW DBEW AImod,w 总强度 相对丰度/%
    CHOCl 不含AC 1.29 0.50 6.98 0.22 4.60×109 93.77
    含AC 1.23 0.54 7.24 0.25 2.8×109 94.38
    CHONCl 不含AC 1.42 0.28 8.84 0.17 1.48×108 3.41
    含AC 1.33 0.33 9.22 0.24 7.52×107 2.54
    CHOSCl 不含AC 1.68 0.21 7.28 0.03 6.8×107 1.37
    含AC 1.67 0.51 3.69 -0.31 6.15×107 2.07
    CHONSCl 不含AC 1.6 0.30 7.02 -0.14 7.2×107 1.45
    含AC 0.49 0.13 0.65 -0.12 4.02×107 1.01
     | Show Table
    DownLoad: CSV

    DOM的成分也会影响AC对氯的反应特性。因此,探究了AC存在时RW氯化过程中DOM的转化情况。基于修正后的芳香指数和H/C将溶解性有机质分为5类[18]:稠环多环芳烃(AImod>0.66)、多酚类物质(0.5<AImod≤0.66)、高度不饱和酚类物质(AImod≤0.5且H/C≤1.5)、脂肪类物质(AImod≤0.5和1.5<H/C≤2)和饱和类物质(H/C>2)[19]。如图5(a)和图5(b)所示,绝大部分有机物属于脂肪类物质、高度不饱和酚类物质和多酚类物质。此外,SUVA254(即UV254/DOC)可用来比较不同样品中的芳香族化合物的含量(即芳香度)[20]。芳香度与反应性有关,有机物的反应性反映了通过凝聚去除该有机物的难易程度,以及有机物与氯反应产生DBPs的可能性。如图6所示,对比了氯化后RW中是否存在AC时SUVA254的变化,THMs和HAAs的浓度随SUVA254的增加而增加[21]图5显示AC存在时的SUVA254低于不含AC的水样,与上述结果保持一致。含AC和不含AC的RW中DOC在氯化前后仅有轻微变化,这表明DOM未发生矿化作用。SUVA254还可以表征有机物中不饱和键数量(芳香特征),氯化后的RW中,加入AC组后的SUVA254较低,因此其芳香性低,DOM转化的较多。在两种氯化过程后,SUVA254均有所下降,尤其是AC存在时,BULMAN等[5]的研究也得到了类似的结果,这表明SUVA254的大幅下降可能是由于含有芳香族DOM分子,富含芳香族结构的化合物可以提供更强的疏水作用、离子相互作用和键合作用。

    图 5  RW氯化24 h后分子式的范克雷维伦图
    Figure 5.  van Krevelen plot of the molecular formula of RW after 24 h of chlorination
    图 6  RW氯化过程中SUVA254的变化
    Figure 6.  Changes in SUVA254 during chlorination of raw water

    利用FTICR-MS对有无AC存在的2种情况下的无氯分子式进行比较。如图5(c)所示,2种条件下,相同分子式的比例(约70%)显著高于氯化分子式的比例。如表2所示,CHO、CHON、CHOS和CHONS分子式的H/Cw和O/Cw相似。不含AC氯化条件下CHO、CHON、CHOS和CHONS分子式的DBEw均大于AC存在时氯化条件下的DBEw。较低的DBEw表明产生的DOM平均脂肪族含量更高,与SUVA254结果相一致。有研究[15, 22]表明,AC可与氧气反应生成过氧自由基,过氧自由基经过双分子衰变或单分子衰变生成醇或醛。因此,较低的DBEw可能是由于过氧自由基在AC和氧的活化下产生了部分醇。

    表 2  RW氯化过程后的非氯化产物分子式分子指数的强度加权平均值
    Table 2.  Intensity-weighted average of molecular indices of molecular formulae for non-chlorinated products after the RW chlorination process
    分子式 水样 H/CW O/CW DBEW AImod,w 总强度 相对丰度/%
    CHO 不含AC 1.23 0.52 9.54 0.24 1.79×1011 80.56
    含AC 1.23 0.52 9.35 0.23 1.79×1011 78.06
    CHON 不含AC 1.20 0.52 9.99 0.23 3.21×1010 14.45
    含AC 1.20 0.52 9.88 0.23 3.11×1010 13.56
    CHOS 不含AC 1.40 0.49 6.45 0.07 8.5×109 3.83
    含AC 1.42 0.53 6.40 0.03 1.54×1010 6.71
    CHONS 不含AC 1.51 0.55 7.81 -0.14 2.58×109 1.16
    含AC 1.55 0.60 7.12 -0.22 3.82×109 1.67
     | Show Table
    DownLoad: CSV

    采用ESR技术对AC氯化前后产生的自由基进行检测分析。如图7所示,在只含AC时,可检测到活性炭表面的持久性自由基。在AC氯化后发现了多重峰的存在,DMPO-H2O体系中的七重峰对应·Cl/DMPO加合物,表明在此过程中产生了Cl·[23],Cl·是一种对有机化合物具有较强选择性的自由基,易发生取代反应。由于Cl·具有很强的活性,因此,能够促进DBPs的生成,诱导某些有毒副产物的形成。ESR的结果表明,AC表面持久性自由基可催化次氯酸产生Cl·,在自由基的作用下,DOM与RCS之间会产生氯化副产物,尤其是亲核反应在其中发挥着很大作用,并且DOM的芳香性变强也有助于总有机氯的形成[24]。因此,氯化过程中AC会促进自由基的产生进而诱导其他类型DBPs的生成。

    图 7  AC氯化前后的ESR光谱对比
    Figure 7.  Comparison of ESR spectra before and after AC chlorination

    AC作为一种优良吸附剂被广泛应用于水处理工艺和终端净水过滤;同时,氯也是一种常见的预氧化剂和消毒剂。本文阐述了AC对RW氯化过程DBPs生成及DOM转化的影响,主要结果如下。

    1)虽然AC存在时余氯下降较为迅速,但生成的THMs及HAAs较少,这是由于AC优良的吸附性能以及还原性AC快速消耗氯生成其他DBPs,DOC的变化也可说明了这一变化趋势。

    2) FTICR-MS检测结果表明,AC存在时含氯物质的数量减少,Cl-DBPs的种类由302种减少到220种,其中有57种特异性氯代产物,CHOSCl化合物生成较多,其他CHOCl、CHONCl、CHONSCl化合物的数量减少。

    3) FTICR-MS的结果显示,AC存在时可鉴定的化合物数量呈下降趋势,其是否存在的两种情况,生成的化合物有较大区别,但大部分化合物均属于脂肪类物质、高度不饱和类及酚类物质和多酚类物质。AC存在时,SUVA254的大幅降低表明含有芳香性的DOM被转化,而未加入AC组没有发生矿化反应。

    4) AC表面持久性自由基催化次氯酸产生Cl·,Cl·引发的自由基反应是造成氯化产物及有机物形态改变的主要原因。

  • 图 1  活性艳红K-2BP的分子结构式

    Figure 1.  Molecular structural formula of reactive brilliant red K-2BP

    图 2  氧化铝小球、催化剂小球和催化剂小球剖面

    Figure 2.  Commercial γ-Al2O3 bead, prepared catalyst bead and catalyst bead profile

    图 3  连续流实验装置

    Figure 3.  Continuous flow test device

    图 4  活性艳红K-2BP溶液的可见扫描光谱图和标准曲线

    Figure 4.  Visible scanning spectrum and standard curve of reactive brilliant red K-2BP solution

    图 5  活性艳红K-2BP初始浓度对脱色率的影响

    Figure 5.  Effect of initial concentration of reactive brilliant red K-2BP on its decolorization rate

    图 6  初始有效氯对脱色率的影响

    Figure 6.  Effect of initial available chlorine on decolorization rate

    图 7  初始pH对脱色率的影响

    Figure 7.  Effect of initial pH on decolorization rate

    图 8  催化剂投加量对脱色率的影响

    Figure 8.  Effect of catalyst dosage on decolorization rate

    图 9  活性艳红K-2BP脱色的连续流实验

    Figure 9.  Continuous flow experiment for decolorization of reactive brilliant red K-2BP

    图 10  活性艳红K-2BP脱色的优化连续流实验

    Figure 10.  Optimization of continuous flow experiment for decolorization of reactive brilliant red K-2BP

    图 11  自由基清除剂对次氯酸钠催化氧化活性艳红K-2BP脱色率的影响

    Figure 11.  Effect of free radical scavenger on decolorization rate of reactive brilliant Red K-2BP catalyzed oxidation by sodium hypochlorite

    图 12  活性艳红K-2BP脱色可见扫描光谱图

    Figure 12.  Visible scanning spectra of reactive brilliant red K-2BP decolorization

    图 13  活性艳红K-2BP的色度、COD和TOC去除率

    Figure 13.  Color, COD and TOC removal rate of reactive brilliant red K-2BP

    图 14  催化剂的SEM照片

    Figure 14.  SEM photos of the catalyst

    表 1  不同初始活性艳红K-2BP浓度下拟一级动力学方程及参数

    Table 1.  Pseudo-first-order kinetic equations and parameters at different initial concentrations of reactive brilliant red K-2BP

    染料初始浓度/(mg·L−1)反应动力学方程R2k/min−1
    100lnC0/C =0.030 3t0.976 570.030 3
    200lnC0/C=0.029 5t0.979 680.029 5
    300lnC0/C=0.023 6t0.980 400.023 6
    400lnC0/C=0.021t0.989 820.021
    染料初始浓度/(mg·L−1)反应动力学方程R2k/min−1
    100lnC0/C =0.030 3t0.976 570.030 3
    200lnC0/C=0.029 5t0.979 680.029 5
    300lnC0/C=0.023 6t0.980 400.023 6
    400lnC0/C=0.021t0.989 820.021
    下载: 导出CSV

    表 2  不同初始有效氯下拟一级动力学方程及参数

    Table 2.  Pseudo-first-order kinetic equations and parameters at different initial available chlorine

    有效氯初始浓度/(mg·L−1)反应动力学方程R2k/min−1
    60lnC0/C =0.019 3t0.973 850.019 3
    120lnC0/C =0.027 2t0.980 940.027 2
    180lnC0/C =0.029 3t0.983 470.029 3
    250lnC0/C=0.032 1t0.978 970.032 1
    有效氯初始浓度/(mg·L−1)反应动力学方程R2k/min−1
    60lnC0/C =0.019 3t0.973 850.019 3
    120lnC0/C =0.027 2t0.980 940.027 2
    180lnC0/C =0.029 3t0.983 470.029 3
    250lnC0/C=0.032 1t0.978 970.032 1
    下载: 导出CSV

    表 3  不同初始pH下拟一级动力学方程及参数

    Table 3.  Pseudo-first-order kinetic equations and parameters at different initial pH values

    初始pH反应动力学方程R2k/min-1
    6lnC0/C=0.020 3t0.960 440.020 3
    7lnC0/C=0.025 3t0.968 460.025 3
    8lnC0/C=0.031 5t0.955 080.031 5
    9lnC0/C=0.032 1t0.957 380.032 1
    初始pH反应动力学方程R2k/min-1
    6lnC0/C=0.020 3t0.960 440.020 3
    7lnC0/C=0.025 3t0.968 460.025 3
    8lnC0/C=0.031 5t0.955 080.031 5
    9lnC0/C=0.032 1t0.957 380.032 1
    下载: 导出CSV

    表 4  不同催化剂投加量下拟一级动力学方程及参数

    Table 4.  Pseudo-first-order kinetic equation and parameters at different catalyst dosages

    催化剂投加量/(g·L−1)反应动力学方程R2k/min−1
    80lnC0/C=0.016 8t0.918 810.016 8
    160lnC0/C=0.020 8t0.964 860.020 8
    240lnC0/C=0.025 5t0.982 730.025 5
    400lnC0/C=0.035 2t0.979 790.035 2
    4001)lnC0/C=0.012 5t0.939 010.012 5
      注:1)用过720 min的催化剂。
    催化剂投加量/(g·L−1)反应动力学方程R2k/min−1
    80lnC0/C=0.016 8t0.918 810.016 8
    160lnC0/C=0.020 8t0.964 860.020 8
    240lnC0/C=0.025 5t0.982 730.025 5
    400lnC0/C=0.035 2t0.979 790.035 2
    4001)lnC0/C=0.012 5t0.939 010.012 5
      注:1)用过720 min的催化剂。
    下载: 导出CSV

    表 5  催化剂表面元素的相对占比

    Table 5.  Relative proportion of catalyst surface elements

    元素峰位置结合能/eV相对含量/%
    新制备的催化剂用过720 min的催化剂用过3 000 min的催化剂新制备的催化剂用过720 min的催化剂用过3 000 min的催化剂
    NiNi(OH)2,2p3/2855.98855.96855.866.345.2510.61
    NiNi(OH)2,2p1/2873.61873.58873.26
    NiNiOOH,2p3/2861.86861.94861.543.922.214.84
    NiNiOOH,2p1/2879.81879.94879.54
    OO1s531.20531.28531.4787.6790.6183.08
    SS2p168.67168.62168.482.071.931.47
    元素峰位置结合能/eV相对含量/%
    新制备的催化剂用过720 min的催化剂用过3 000 min的催化剂新制备的催化剂用过720 min的催化剂用过3 000 min的催化剂
    NiNi(OH)2,2p3/2855.98855.96855.866.345.2510.61
    NiNi(OH)2,2p1/2873.61873.58873.26
    NiNiOOH,2p3/2861.86861.94861.543.922.214.84
    NiNiOOH,2p1/2879.81879.94879.54
    OO1s531.20531.28531.4787.6790.6183.08
    SS2p168.67168.62168.482.071.931.47
    下载: 导出CSV
  • [1] BEHIN J, AKBARI A, MAHMOUDI M, et al. Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale[J]. Water Research, 2017, 121: 120-128.
    [2] GANIYU S O, ZHOU M H, HUITLE C A M. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B: Environmental, 2018, 235: 103-129.
    [3] GU T, DONG H X, LU T L, et al. Fluoride ion accelerating degradation of organic pollutants by Cu(II)- catalyzed Fenton-like reaction at wide pH range[J]. Journal of Hazardous Materials, 2019, 377: 365-370.
    [4] ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110-121.
    [5] 盛梅, 马芬, 杨文伟. 次氯酸钠溶液稳定性研究[J]. 化工技术与开发, 2005, 34(3): 8-10. doi: 10.3969/j.issn.1671-9905.2005.03.004
    [6] 任连扣. 金属离子对次氯酸钠分解的影响及其存在形态[J]. 中国氯碱, 1989(11): 61-62.
    [7] 申晨, 梅华, 石晓鹏, 等. 镍基催化剂的改性及其提高NaClO氧化性能[J]. 化学反应工程与工艺, 2010, 26(1): 47-51. doi: 10.3969/j.issn.1001-7631.2010.01.009
    [8] 石晓鹏, 梅华, 姚虎卿. 改性镍基催化剂催化增强次氯酸钠氧化性的性能研究[J]. 工业催化, 2009, 17(8): 72-76. doi: 10.3969/j.issn.1008-1143.2009.08.015
    [9] 石晓鹏, 梅华, 沈健. Ni2O3催化剂的制备及其催化NaClO分解产生活性氧的性能[J]. 化工进展, 2009, 28(6): 962-966. doi: 10.3321/j.issn:1000-6613.2009.06.010
    [10] 潘峰, 吴家瑶. 催化氧化法处理印染废水试验[J]. 污染防治技术, 1999, 12(2): 109-110.
    [11] 谢少雄, 黄功浩, 何淑妤. 催化氧化法处理印染废水的试验研究[J]. 汕头大学学报(自然科学版), 2003, 18(2): 40-44.
    [12] 顾梦琪, 尹启东, 刘爱科, 等. 水解酸化/AO组合工艺处理印染废水色度去除与脱氮性能[J]. 环境科学, 2018, 39(12): 5550-5557.
    [13] KHEHRA M S, SAINI H S, SHARMA D K, et al. Biodegradation of azo dye C. I. acid red 88 by an anoxic-aerobic sequential bioreactor[J]. Dyes and Pigments, 2006, 70(1): 1-7.
    [14] AHMAD A, MOHD-SETAPAR S H, CHUONG C S, et al. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater[J]. RSC Advances, 2015, 39(5): 30801-30818.
    [15] LIN K Y A, ZHANG Z Y. Degradation of bisphenol a using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327.
    [16] MA J, LI H Y, CHI L P, et al. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature[J]. Chemosphere, 2017, 189: 86-93.
    [17] 李蕾, 夏思淝, 刘文利, 等. 气敏金属氧化物吸附氧负离子O2, O的研究[J]. 山东工业大学学报, 1994, 24(3): 287-290.
    [18] LI LS, LI J H, BAI J, et al. The effect and mechanism of organic pollutants oxidation and chemical energy conversion for neutral wastewater via strengthening reactive oxygen species[J]. Science of the Total Environment, 2019, 651(1): 1226-1235.
    [19] ZENG Q F, FU J, ZHOU Y, et al. Photooxidation degradation of reactive brilliant red K-2BP in aqueous solution by ultraviolet radiation/sodium hypochlorite[J]. Clean Soil Air Water, 2009, 37(7): 574-580.
    [20] XU W Y, GAO H Y. Preparation of bead-type NiOx(OH)y catalyst for hypochlorite conversion and reactive brilliant red K-2BP degradation[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103522.
    [21] 谭浩强, 何文杰, 谢桂丽, 等. 化学沉淀法强化常规工艺去除水中镍的应急处理[J]. 供水技术, 2012, 6(4): 1-4. doi: 10.3969/j.issn.1673-9353.2012.04.001
    [22] MONTEAGUDO J M, DURÁN A, SAN-MARTIN I, et al. Roles of different intermediate active species in the mineralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process[J]. Applied Catalysis B-Environment, 2011, 106(1/2): 242-249.
    [23] 陈柏言. 冰中黑炭来源单线态氧的光化学生成[D]. 长春: 吉林大学, 2017.
    [24] DEROSA M C, CRUTCHLEY R J. Photosensitized singlet oxygen and its applications[J]. Coordination Chemistry Reviews, 2002, 233-234: 351-371.
    [25] 吴峰, 华河林, 邓南圣. 三种偶氮染料降解历程在紫外-可见光谱上的表现[J]. 环境化学, 2000, 19(4): 348-351. doi: 10.3321/j.issn:0254-6108.2000.04.010
    [26] 徐向荣, 王文华, 李华斌. Fenton试剂与染料的反应[J]. 环境科学, 1999, 20(3): 72-74. doi: 10.3321/j.issn:0250-3301.1999.03.019
    [27] BAÊTA B E L, LIMA D R S, SILVA S Q, et al. Evaluation of soluble microbial products and aromatic amines accumulation during a combined anaerobic/aerobic treatment of a model azo dye[J]. Chemical Engineering Journal, 2015, 259: 936-944.
    [28] YANG S X, ZHU W P, JIANG Z P, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505.
    [29] YANG S X, FENG Y J, WAN J F, et al. Effect of CeO2 addition on the structure and activity of RuO2/γ-Al2O3 catalyst[J]. Applied Surface Science, 2005, 246(1/2/3): 222-228.
    [30] YUE D T, GUO C, YAN X, et al. Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation[J]. Chemical Engineering Journal, 2019, 360: 97-103.
  • 加载中
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.2 %DOWNLOAD: 3.2 %HTML全文: 87.2 %HTML全文: 87.2 %摘要: 9.6 %摘要: 9.6 %DOWNLOADHTML全文摘要Highcharts.com
图( 14) 表( 5)
计量
  • 文章访问数:  5727
  • HTML全文浏览数:  5727
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-05
  • 录用日期:  2020-11-26
  • 刊出日期:  2021-03-10
徐文英, 高浩阳. NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果[J]. 环境工程学报, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141
引用本文: 徐文英, 高浩阳. NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果[J]. 环境工程学报, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141
XU Wenying, GAO Haoyang. Degradation and decolorization of reactive brilliant red K-2BP in simulated printing and dyeing wastewater by NiOx(OH)y/NaClO catalytic oxidation system[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141
Citation: XU Wenying, GAO Haoyang. Degradation and decolorization of reactive brilliant red K-2BP in simulated printing and dyeing wastewater by NiOx(OH)y/NaClO catalytic oxidation system[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141

NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果

    通讯作者: 徐文英, E-mail: xuwy@tongji.edu.cn
    作者简介: 徐文英(1970—),女,博士,副研究员。研究方向:高级氧化技术。E-mail:xuwy@tongji.edu.cn
  • 1. 同济大学环境科学与工程学院,上海 200092
  • 2. 同济大学城市污染控制国家工程研究中心,上海 200092
基金项目:
道扬环保科技有限公司,印染废水降解新工艺的开发项目(kh0040020183321)

摘要: 采用NaClO和浸渍法制备的小球型复合镍基催化剂NiOx(OH)y/γ-Al2O3组成的体系,对活性艳红K-2BP模拟废水进行了降解脱色的系统研究,探讨了反应条件对脱色率和反应后出水中Ni2+溶出量的影响,分析了染料的降解机理。结果表明:该体系对染料的脱色效果良好,脱色率随着染料浓度的增加而降低,其随着初始pH、有效氯和催化剂投加量的增加而增加;连续流实验中染料的脱色率达到80%以上,在运行至9 000 min时,催化剂没有出现失活现象;原子氧在染料降解过程中起到主导作用。采用SEM和XPS对催化层结构进行了表征,催化层中的化学吸附氧占比先增加后减小,新制备的催化层的化学吸附氧占比为87%;当用过720 min后,其占比增大到91%;经连续流实验运行3 000 min后,其占比降低到83%。本催化体系在印染废水处理中具有一定的应用潜力。

English Abstract

  • 近年来,纺织印染废水处理已成为制约我国纺织印染行业可持续发展的重要问题。在地方和行业排放标准提高的背景下,采用传统水处理工艺如生物法、絮凝沉淀法和吸附法单独处理上述废水时往往难以达标,而化学氧化法、光催化氧化法和电化学法又由于运行成本的高昂未能在利润微薄的印染企业得以推广。化学氧化法包括臭氧氧化法、芬顿法和高温深度氧化法。较之其他的化学氧化法,芬顿法在目前难降解印染废水处理中应用较多,但其也存在铁泥处理、大量酸碱调节pH、亚铁离子催化作用慢等问题[1-4]。次氯酸钠具有强氧化性,且价格低廉(1t含10%~11%有效氯的液体次氯酸钠的价格为600元)。但次氯酸钠在温度较高或者在日光照射的条件下,容易发生分解反应,生成氯酸钠、氯化钠和氯化氢气体等,因而大大降低了其强氧化性的利用率。如何提高次氯酸钠氧化性能的利用率对拓宽其在水处理中的应用至关重要。

    次氯酸钠的氧化性在镍、铁、锰等过渡金属氧化物/氢氧化物的作用下可大大增强[5-6]。其中,镍基催化剂由于具有催化活性高、分散性好和价格低廉的优点而备受关注[7-9]。有学者[10-11]采用NaClO/Ni2O3催化体系处理印染废水,取得了较好的效果,但催化剂Ni2O3在应用过程中的转化、溶解和处理后出水中Ni2+溶出量方面研究的缺失限制了该催化氧化工艺的应用及推广。此外,市售Ni2O3为黑色粉末,若直接用于水处理的话,很容易流失,从而导致金属镍的二次污染。有科研人员[7-9]在400~500 ℃高温焙烧制取镍基催化剂,用于促进次氯酸钠的分解。本课题组的预研结果表明,用高温焙烧法制取的颗粒型催化剂不能有效地促进次氯酸钠的分解。

    活性艳红K-2BP分子式为C25H14N7Na3O10S3Cl2,相对分子质量为808.48,最大吸收波长为534.5 nm。K-2BP分子结构包含1个偶氮基,一氯均三嗪基及2个苯环和1个萘环。苯环和萘环上有3个磺酸基(图1)。这些芳香环上的共轭链使染料显色,也使其具备了高水溶性、在自然条件下难降解的特性。一般来说,染料分子结构中共轭链越长,颜色越深。采用生物法降解这类染料,一般需要厌氧/好氧组合工艺才能获得良好的处理效果。顾梦琪等[12]采用水解酸化/AO组合工艺处理活性艳红X-3B的印染废水,取得了良好的效果。总的来说,如何低成本、高效率地处理这类高色度及难降解的废水一直是水处理领域的一项难题[13-14]

    本文旨在采用简单易行的氧化铝小球浸渍法制备一种使用方便、催化效果好、不会流失、不产生二次Ni2+污染的镍基催化剂NiOx(OH)y,并采用NaClO和该催化剂组成的体系降解模拟印染废水中的活性艳红K-2BP,考察了在不同反应条件下该体系对活性艳红K-2BP的处理效果和处理后出水中Ni2+的溶出情况,以期为开发一种性价比较高的水处理催化氧化新工艺提供参考。

  • 催化剂载体选用洁之源水处理材料厂的γ-Al2O3小球。该小球表面具有丰富的毛细孔,这些孔道具有较强的吸附能力,能有效吸附溶液及其中的分子和离子。γ-Al2O3参数如下:直径为2~3 mm、氧化铝含量≥92%、孔容为0.35 mL·g−1、比表面积S≥300 m2·g−1。γ-Al2O3俗称刚玉,耐酸碱。

    在本研究中,选用过硫酸钠作为制备镍基催化剂的氧化剂。和其他氧化剂比较,过硫酸钠具有反应pH范围宽、溶解度好、活化后能够同时产生SO4·和·OH的优点。相比于·OH (E0=1.8~2.7 V),SO4·具有更高的氧化电位(E0=2.5~3.1 V)和更长的半衰期,并且过硫酸钠在碱性条件下也可以产生具有强氧化性的SO4·[15-16]

    Ni2+与Na2S2O8在碱性条件下反应生成NiOOH与Ni(OH)2的混合物,采用化学式NiOx(OH)y表示该混合物。将负载有Na2S2O8-NaOH混合液的γ-Al2O3小球浸泡在含有Ni2+的溶液里发生反应,在γ-Al2O3表面形成一层NiOx(OH)y沉淀,从而得到NiOx(OH)y/Al2O3催化剂小球。在制备催化剂之前,先用蒸馏水洗净载体γ-Al2O3小球表面的粉尘和其中的木屑,然后再放入箱式电阻炉中于200 ℃下焙烧2 h,从炉中取出,待冷却至室温后称量使用。

    浸渍步骤共分为以下3个步骤:按一定比例和浓度配置Na2S2O8-NaOH混合液,称取一定量的γ-Al2O3小球,与该混合液一起放入100 mL容量的锥形瓶中,室温下在振荡器上以100 r·min−1振荡2 h,将得到的Na2S2O8-NaOH/Al2O3小球滤出,烘干;配置一定浓度的Ni(NO3)2溶液,再将烘干后的小球和Ni(NO3)2溶液放入锥形瓶中,室温下在振荡器上以100 r·min−1的频率振荡2 h,将制得的NiOx(OH)y/Al2O3小球滤出,烘干;将制得的NiOx(OH)y/Al2O3小球与配制的Na2S2O8-NaOH混合液置于锥形瓶中,室温下在振荡器上以100 r·min−1振荡2 h,将NiOx(OH)y/Al2O3小球滤出,用蒸馏水清洗3次。最后,将洗净后的NiOx(OH)y/Al2O3置于马弗炉中于100 ℃下焙烧2 h,制得次氯酸钠催化氧化实验所需的催化剂样品。

    所制得的NiOx(OH)y/Al2O3催化剂呈蛋壳型,其表面裹着一层黑绿色的NiOx(OH)y膜,厚度约为0.1 mm(图2)。大量Ni2+与碱反应生成Ni(OH)2,生成的部分Ni(OH)2与过硫酸钠反应生成NiOOH;催化剂的内部仍为白色的Al2O3,Ni2+没有渗透到小球内部,这是因为小球表面生成的黑绿色的NiOx(OH)y膜阻碍了Ni2+的渗透。

    当化学式NiOx(OH)y中的x=1、y=1时,Ni2+在碱性溶液中被Na2S2O8氧化的过程如式(1)所示,式(1)为式(2)和式(3)的总和。

    由式(1)~式(3)可知,过硫酸钠与镍(Ⅱ)完全反应后,产物包括Ni(OH)2、NiOOH、水和SO24。其中,SO24能很容易地被冲洗掉。由式(1)可知,碱性条件促进Ni2+的氧化。在羟基氧化镍NiOOH的存在下,次氯酸钠的分解反应可以看作是式(4)和式(5)的总和。

    产生的氧分子能被物理吸附在镍基催化层上,捕获电子后转化为化学吸附氧O2和O以及原子氧O(式(7)~式(8))。物理吸附的氧分子也可以直接分解成原子氧[17](式(9)) 。

    式中:O2(g)为气态氧;S为表面吸附位置;O2为表面物理吸附的氧;*和e代表导带底部空位和导带电子;∆G为反应能。反应产生的原子氧O非常活跃,可以快速氧化和分解有机物[18]。羟基氧化镍可以长时间用作催化剂,因为它可以按照式(4)和式(5)进行再生和再利用。

  • 本研究所用的连续流实验装置由反应器、进水泵、循环泵以及进水桶等组成,实物图及平面三视图见图3。反应器(Φ为6 cm,H为10 cm)材质为有机玻璃,在反应器的内壁靠近出水口贴着一层尼龙滤网(孔径为2 mm),以防催化剂小球的流失。模拟印染废水下进上出,内循环流上进下出,以使反应器内水质混合均匀,内循环流的流速约为进水流速的5倍。每天运行360 min或者540 min,总共运行了20 d。

  • 过硫酸钠(99%)、氢氧化钠(99%)、六水合硝酸镍(99%)、浓硫酸(98%)、呋喃甲醇和叔丁醇均为分析纯,购自国药集团化学试剂有限公司;次氯酸钠溶液含有效氯≥10%。

    ZYL便携式余氯分析仪,杭州齐威仪器有限公司;SD90740镍离子浓度测定仪,上海昕瑞仪器仪表有限公司;MIT-3F型COD检测仪,常州三丰仪器科技有限公司;TOC-VCPH分析仪,日本岛津;723N可见光分光光度计,上海佑科仪器仪表有限公司;EscaLab 250Xi型X射线光电子能谱仪,美国Thermo Fisher,Al-Kα射线单色源;扫描电镜SEM, 美国FEI Inspect F50。

  • 配置一定浓度的活性艳红K-2BP溶液,加入一定量的次氯酸钠溶液,充分搅拌,调节pH至所需值,得到印染废水/次氯酸钠混合液。取上述混合液50 mL置入100 mL锥形瓶内,称取一定量的催化剂样品快速放入上述溶液中。室温下在振荡器上以100 r·min−1的速度振荡120 min。分别在第10、20、30、50、70、90、120 min时取3 mL左右水样,测其吸光度,结果如图4所示,利用标准曲线法检测染料的浓度,按式(10)计算其脱色率。测好吸光度后将染料溶液倒回锥形瓶中继续反应。

    式中:R为脱色率;C0Ct分别为染料的初始浓度和t时刻的浓度,mg·L−1

  • 配置一定浓度的活性艳红K-2BP溶液,加入一定量的次氯酸钠溶液,充分搅拌,调节pH至所需值,得到印染废水/次氯酸钠混合液。在2个相同浓度的混合液中分别加入一定量的自由基清除剂叔丁醇和呋喃甲醇,与制备的催化剂样品一起放入100 mL锥形瓶内,室温下在振荡器上以100 r·min−1的速度振荡反应,检测染料的脱色率变化。

  • 检测了当初始pH为9、初始有效氯浓度为120 mg·L−1、催化剂投加量为240 g·L−1、初始染料浓度为100、200、300、400 mg·L−1时,不同反应时间下的脱色率,结果如图5所示。由图5可以看出,经过120 min的处理,4种浓度的印染废水的脱色率均能达到90%以上。当初始染料浓度为100 mg·L−1和200 mg·L−1时,脱色率的值很接近,在反应50 min时脱色率达到80%以上。在处理初始浓度为400 mg·L−1的染料废水时,需要把处理时间延长到90 min以上才能达到80%以上的脱色率。

    表1可知,活性艳红K-2BP在不同初始浓度下的脱色降解过程都符合拟一级动力学方程。从200 mg·L−1的初始浓度开始,反应速率常数随着初始染料浓度的增加而降低,这是由于在4个体系中具有等量的有效氯和镍基催化剂,由此产生等量的活性氧。染料的分解受到活性氧产量的限制,其浓度的增加使反应速率变慢。在200 mg·L−1以下时没有出现这种现象。当染料浓度不高时,系统中产生的活性氧足以使偶氮键断裂,因此,初始浓度改变时速率常数变化不大。

  • 检测当初始pH为9、活性艳红K-2BP的初始浓度为200 mg·L−1、催化剂投加量为240 g·L−1、初始有效氯浓度分别为60、120、180、250 mg·L−1时,在不同反应时间下K-2BP的脱色率,结果如图6所示。由图6可以看出,当初始有效氯浓度为180 mg·L−1和250 mg·L−1时,K-2BP的脱色率在50 min时均达到80%以上,而初始有效氯浓度为60 mg·L−1的水样在90 min时脱色率才能达到80%。

    表2可见,在不同的初始有效氯浓度下,活性艳红K-2BP脱色反应符合拟一级动力学方程。其中,反应速率常数随着初始有效氯浓度的增加而增大,这是由于次氯酸钠催化分解后产生的活性氧能与染料分子进行反应,增大初始有效氯浓度可以促进活性氧产量的提升,从而加快活性艳红K-2BP溶液的脱色反应,拟一级反应速率常数也随之增大。此外,反应速率增加的幅度随着有效氯浓度的增加逐渐变小,这是因为随着活性氧数量的增加,易降解的共轭发色基团逐渐分解,模拟废水颜色变浅,但染料并没有完全矿化,活性氧会继续与其他的如萘环、均三嗪等部分难降解基团反应。这些基团本身不显色,但会随着氧化反应的深入而逐步开环分解为更小的分子结构[19]。此外,活性氧的数量和有效氯浓度之间不是简单的线性正比例关系,当催化剂的量一定时,活性氧的产量随着有效氯浓度的增加而增加,增加的幅度减小,并在一定的有效氯浓度下达到最大值,继续增加有效氯浓度也不会增加活性氧的数量。所以,从脱色率上看,反应速率增加的幅度变小了。

  • 检测当初始有效氯浓度为120 mg·L−1、初始染料浓度为200 mg·L−1、催化剂投加量为240 g·L−1、初始pH为6、7、8、9时,不同反应时间下的脱色率,结果如图7所示。由图7可以看出,当初始pH为8和9时,2个溶液体系中的脱色效果基本相同,当反应50 min时,脱色率已经达到86%以上。而初始pH为7时的脱色效果次于初始pH为8和9时的,初始pH为6时脱色效果最差,当反应90 min时此体系中的脱色率才达到80%以上。

    表3可见,不同初始pH时次氯酸钠催化降解活性艳红K-2BP的过程符合拟一级动力学方程,而且反应速率常数随着初始pH的增加而增加,这是因为在染料降解过程中,溶液pH会持续性降低。ZENG等[19]发现活性艳红K-2BP经次氯酸钠氧化降解后,pH由7.5左右降至4.65左右。在反应过程中染料分子的酚基和HClO的电离过程中会释放出氢离子(式(11)和式(12));此外,在染料降解过程中可能产生芳香酸和脂肪酸,也会降低溶液pH。因此,弱碱性的初始pH有利于中和反应过程产生的氢离子,从而减小pH的降低幅度。本课题组的前期研究结果[20]表明,采用该类催化剂分解次氯酸钠,当溶液的初始pH为8和9时,次氯酸钠的转化率最高,产生最多的活性氧,从而有利于染料的脱色降解效果。

  • 测定当初始有效氯浓度为120 mg·L−1、初始染料浓度为200 mg·L−1、初始pH为9、催化剂投加量为0、80、160、240、400 g·L−1时,不同反应时间下的脱色率,结果如图8所示。由图8可以看出,催化剂投加量的增加显著改善了活性艳红K-2BP的脱色效果。无催化剂时,次氯酸钠基本不能降解活性艳红K-2BP,该染料化学性质相当稳定;催化剂投加量为80 g·L−1溶液时,脱色率直到90 min时仍未能达到80%;当投加量增加至400 g·L−1时,脱色率在90 min时能达到96%。

    表4可以看出,在80~400 g·L−1的催化剂投加量下,脱色反应符合拟一级动力学方程。催化剂投加量变大增加了催化剂表面活性位点的数量,提升了其对有效氯的吸附和分解速率,染料和中间产物对催化剂表面的位点的竞争吸附减少,因此,提高了染料降解反应速率常数,改善了染料的脱色效果。在不使用氧化剂,单独使用400 g·L−1新制备的催化剂处理废水120 min后,脱色率仅为9.7%,而且随着反应时间的延长,脱色率变化幅度很小,说明这部分脱色率是由吸附主导的。单独使用400 g·L−1批量实验用过6次的(每次使用时间为120 min)催化剂处理废水,发现脱色率随着反应时间的延长增加,其增速比(NaClO + 80 g·L−1催化剂)的工况慢,尤其在反应的初始阶段。该工况的脱色反应也符合拟一级动力学方程,拟合度较高。根据XPS测试结果,相比新制备的催化剂,用过720 min的催化剂表面含有较高比例的化学吸附氧(表5)。在反应中加入催化剂时,催化剂表面的氧空位含量增加,化学吸附氧含量增加,反应中Ni(II)和Ni(III)的可变化合价使催化剂具有很好的电子转移特性,这有利于物理吸附氧捕获电子形成化学吸附氧(式(7))。化学吸附氧和物理吸附氧分子能转化为具有强氧化性的原子氧(式(8)和式(9)),从而使催化剂具有较高的活性。

  • 测定溶液在连续流反应器运行不同时间下的脱色率以及处理后出水中镍离子浓度,结果如图9所示。由图9可以看出,当初始pH为9、停留时间为120 min、初始有效氯浓度为120 mg·L−1、初始染料浓度为200 mg·L−1、催化剂投加量为400 g·L−1时,活性艳红K-2BP的脱色率稳定在85%。但出水中的镍离子浓度随着运行时间的增长而逐渐升高,从1 680 min开始,反应器出水中的镍离子浓度就超出了污水排放标准(DB31/199−2018)的限值(0.1 mg·L−1)。随着染料的降解,溶液的pH有所下降,催化剂表面的氢氧化镍与溶液中的H+反应生成的Ni2+,从而从催化剂表面溶出。此外,因为染料的降解导致混合溶液的氧化性有所降低,Ni(Ⅲ)/Ni(Ⅱ)值略微降低,不利于NiOOH镍形态的固定和抑制镍离子的溶出。此现象由下文(2.6节)XPS的分析结果也得到了证实。为了降低出水中镍离子的浓度,决定采用缩短反应器内停留时间、提高初始有效氯浓度和初始pH优化连续流运行条件。

    图10可看出,把反应器内的停留时间缩短到60 min、溶液中初始有效氯浓度提升到200 mg·L−1、初始pH提升到11时,连续流反应器出水的脱色率仍然保持在80%以上,且固镍情况得到明显改善。反应初始时,出水中镍离子浓度基本保持在0.01 mg·L−1以下,远低于污水排放的限值;在运行至1 800 min时,镍离子浓度迅速增大且稳定在约0.04 mg·L−1;在运行至2 520 min时,把催化剂小球从反应器里捞出,用蒸馏水冲洗、烘干,采用次氯酸钠稀溶液浸渍再生催化剂,把恢复活性的催化剂放回反应器中重新开始运行,出水中镍离子浓度降到0 mg·L−1,然后再随着实验的进行慢慢升高;当运行至4 860 min时,镍离子浓度迅速增大且稳定在0.05 mg·L−1,再次采用次氯酸钠稀溶液浸渍催化剂,浸渍后反应器出水中镍离子浓度降低到0 mg·L−1,随后又慢慢增加;当反应至7 380 min后,镍离子浓度迅速升高且稳定在0.07 mg·L−1,再次采用次氯酸钠稀溶液浸渍催化剂。针对该工艺出水,如果水质要求高的话,可以考虑采用化学沉淀法强化混凝工艺去除处理后水样中的微量镍离子[21]。连续流实验出水色度低于30倍,COD为40.7 mg·L−1,达到纺织染整工业水污染物排放标准(GB 4287-2012)。次氯酸钠稀溶液浸渍的频率为6~7 d·次−1。2次再生后的催化剂放在反应器内运行数天,出水中漂浮着少量从催化剂表面脱落的黑色微颗粒,少量微颗粒的存在不影响印染废水的脱色反应,可以采用100目孔径的尼龙滤布去除这些颗粒。把3次浸渍再生后的催化剂放在反应器内运行1 620 min后,印染废水的脱色率降低到74.37%,这是催化层轻微脱落导致的结果,活性氧的产量不能满足染料脱色的需求,此时可以通过次氯酸钠稀溶液浸渍再生催化剂或者采用浸渍法重新制备催化剂。

    连续流出水含有较高浓度的有效氯(50 mg·L−1),若直接排放的话,需要采用活性炭过滤、NaHSO3还原等常规方法去除其中的余氯,这样会大大增加水处理的成本。本课题组正开始相关研究工作,以用于减小该工艺出水中余氯的浓度。首先把连续流反应器出水按照一定的比例稀释进水,这样既可以降低印染废水的浓度和色度,也可以把出水中的有效氯利用起来,从而降低次氯酸钠的投加量,降低水处理的运行成本。在不调节pH的情况下,活性艳红/次氯酸钠混合液的pH为10.5~11。随着反应的进行,溶液的pH降低到偏中性,可以直接排放。相比较芬顿法,新工艺具有不需要反复调节pH的优点。

  • 活性氧包括羟基自由基、原子氧、超氧阴离子以及过氧化氢等,其在芬顿法、光催化法、催化臭氧氧化法等高级氧化法降解污染物的过程中起着重要的作用。叔丁醇是一种良好的羟基自由基和硫酸根自由基清除剂,呋喃甲醇能快速地捕获溶液中的原子氧,常被用作原子氧的指示剂[22-23]。在2个浓度为200 mg·L−1和pH为9的模拟印染废水水样中分别添加20 mmol·L−1叔丁醇和呋喃甲醇,再各加入400 g·L−1的催化剂和105 mg·L−1的有效氯,然后观察次氯酸钠催化降解活性艳红K-2BP反应速率的变化情况,并以此来判断在反应中起主导作用的自由基。

    图11可见,加入叔丁醇对活性艳红K-2BP的降解几乎没有影响,而呋喃甲醇对活性艳红K-2BP的脱色效应具有明显的抑制作用,由此可以断定,原子氧在染料降解过程中起着主导作用,羟基自由基和硫酸根自由基在脱色反应中起的作用微乎其微。原子氧是氧的一种高能量形式,其对电子密度大的有机化合物的反应能力要强于基态氧O2和三线态氧O3,比羟基自由基具有更高的选择性,且其自身不能与所有污染物发生反应,但由于具有亲电子性,能在烯型反应中通过夺氢和加成,与不饱和碳碳键迅速发生反应[24]。原子氧能迅速与活性艳红K-2BP中的N=N键发生加成反应,并使之断裂产生NH2,其也能攻击与亚氨基或均三嗪基相连的C—N键,发生夺氢反应进而生成N=C=O[19]

    图12是活性艳红K-2BP在不同反应时间和反应条件下的可见扫描光谱图。随着反应的进行,活性艳红K-2BP在534 nm处的偶氮基的最大吸收峰强度迅速降低且发生蓝移,反应120 min时,该峰已基本消失。这说明偶氮染料分子的共轭发色体系被原子氧完全破坏。萘环结构的可见特征吸收峰一般在310 nm处,但其位置会受到附近其他基团的影响发生偏移[25]。322~330 nm处为萘环的吸收峰,峰面积随着反应的进行而减小,但反应至120 min时该特征吸收峰仍然存在,这说明溶液中的萘环没有完全被打开。

    当有效氯浓度为120 mg·L−1、催化剂的投加量为400 g·L−1时,测定COD为67.7 mg·L−1、pH为9、初始浓度为200 mg·L−1活性艳红K-2BP模拟废水在不同反应时间下COD、色度和TOC的去除率,结果如图13所示。由图13可见,活性艳红K-2BP溶液的脱色率大于COD的去除率。在120 min时活性艳红K-2BP脱色率为97.8%,COD去除率为70%,TOC去除率为33%,有机物的矿化程度较低。活性艳红K-2BP被迅速吸附在催化剂表面,COD去除率迅速升高(0~10 min);吸附在催化剂表面的染料分子被原子氧氧化,偶氮键断裂,难降解的染料分子被分解成芳香胺等化合物。较之染料分子本身,芳香胺的COD较高,故溶液的COD值升高,其去除率降低。芳香胺等被进一步氧化分解成小分子的有机物,COD值降低,其去除率增加。染料被慢慢降解,但没有被完全矿化,这应该是氧化剂剂量不够和萘环太难降解而导致的。

    处理染料溶液时,本工艺和芬顿法均具有色度去除率高于COD或者TOC的去除率的特点,说明在这2种工艺的作用下,首先破坏染料分子中较弱的发色基团,如Ar−N=N−Ar等(Ar代表芳环),然后再破坏分子中的苯环、萘环等其他键能较高的部位[26];但芬顿法是通过催化分解产生羟基自由基进攻有机物分子,从而使其降解。水解酸化/AO组合工艺能去除活性艳红X-3B印染废水中71%的色度和92.2%的COD,这是因为印染废水脱色主要发生在厌氧阶段,而COD主要通过好氧过程去除[12]。厌氧/好氧工艺处理印染废水时,好氧过程可有效去除厌氧过程中难降解的有机物、厌氧过程中生成的挥发酸(VFAs)和染料代谢产物芳香胺等物质[27]

    采用XPS分析法检测催化剂表面的元素及其相对含量。选取新制备的催化剂、在批量实验中使用过720 min的催化剂和在连续流实验中运行过3 000 min的催化剂作为检测样品。由表5可以看出,催化剂表面氧元素的含量最大,3个样品中氧元素的含量都在80%以上。较之新制备的催化剂,做过连续流实验的催化剂样品含氧量略低,这主要是因为氧被消耗在降解活性艳红K-2BP上,使其溶液脱色。531.46 eV左右的峰为化学吸附氧引起的[28]。化学吸附氧较为活跃,在氧化过程中发挥了巨大作用。YANG等[29]发现,化学吸附氧含量的提升有利于改善催化剂的性能。855.79~856.14 eV的峰是由Ni(Ⅱ)引起的,861.59~861.95 eV的峰是由Ni(Ⅲ)引起的[30]。新制的催化剂样品的Ni(Ⅲ)/Ni(Ⅱ)值为0.62,在连续流实验中运行过3 000 min的催化剂样品的比值为0.46,Ni(Ⅲ)的相对含量减少,Ni(Ⅱ)的含量增加,也就是说,催化剂的催化性能略有降低。与批量实验用过720 min的催化剂比较,新制备的催化剂表面化学吸附氧占比略低。图10所示连续流实验结果表明,催化剂可以通过在NaClO或者过硫酸钠稀溶液里浸渍再生,迅速恢复其催化性能。

    图14为催化剂的SEM照片。由图14可见,催化剂的表面比较平整,镍的沉淀物较为均匀且致密地包裹在氧化铝小球表面。因此,镍离子不容易渗透到氧化铝小球里面,制得的复合催化剂在使用过程中也基本不会导致镍离子的溶出,造成二次污染。

  • 1)次氯酸钠催化氧化对活性艳红K-2BP废水具有显著的脱色效果,K-2BP的脱色降解过程符合拟一级动力学方程,反应速率常数随着初始染料浓度的增加而降低,随着有效氯浓度和pH的增加而升高。

    2)在连续流实验中,活性艳红K-2BP的脱色率稳定在80%以上。当初始pH为11时,催化剂固镍效果好,NaClO和再生的催化剂组成的体系也对K-2BP具有显著的脱色效果,出水中镍的溶出量较低。

    3)自由基清除剂实验结果表明,原子氧在染料脱色降解实验中起了重要的作用。

    4)新制备的催化剂表面形成一层较为均匀的NiOx(OH)y膜,催化层表面的化学吸附氧随着催化剂使用时间的延长先增加后降低。使用过3 000 min的催化剂的催化性能略微降低。

参考文献 (30)

返回顶部

目录

/

返回文章
返回