-
焚烧法作为一种垃圾处理技术被世界各国广泛采用。垃圾焚烧产生并排放一系列污染物,尤其是医疗垃圾焚烧,很容易产生汞(HgT)和二恶英(PCDD/Fs)等特别难处理的高毒高害物质,严重威胁环境和人类健康。近几年,我国的医疗条件有很大改善,造成大量医疗垃圾的产生和堆积,且其产量也在不断增加[1],相应的垃圾焚烧排放的HgT和PCDD/Fs也日益增多。
关于垃圾焚烧烟气中HgT的去除,颗粒态汞(HgP)和价态汞(Hg2+)可通过传统的大气污染控制手段(如湿法脱硫、布袋除尘)高效去除[2]。但是气态单质汞(Hg0)的去除相对困难许多,这是因为其蒸汽压高、水溶性低[3]。因此,更好地控制汞排放的关键在于单质汞的去除[4]。常见的气态单质汞的去除方法包括活性炭注射(PAC)[5]、投加催化剂催化法[6]等,二者需要投入很大的成本。而针对气态污染物的处理,低温等离子体技术成本较低且已有较好的实验研究成果。
关于垃圾焚烧烟气中的PCDD/Fs,同样需要另外安装大气污染控制设备,使其达到排放标准[7]。目前,国内垃圾焚烧行业主要使用的是活性炭注射法+布袋除尘组合技术。也有研究[8]表明,SCR技术中用到的催化剂对PCDD/Fs的去除有效果,此技术需要的烟气温度为240~260 ℃,但实际工厂的温度低于210 ℃,这给实际应用带来很大阻碍。
对于医疗垃圾焚烧烟气中的Hg0和PCDD/Fs的去除,通常采用水洗+吸收塔脱酸+活性炭喷射+布袋除尘工艺[9]。这种组合式烟气进化技术虽然可达到较好的去除效果,但是活性炭的耗费量相当巨大。而使用活性炭吸附污染物,存在着吸附饱和后的再生和后续处置问题,大幅增加了污染物的处理成本[10]。
低温等离子体技术是一种高效安全的污染物处理技术。它按照放电形式不同可分为介质阻挡放电、脉冲电晕放电、滑动电弧放电等[11]。其中脉冲电晕低温等离子体有如下优点:系统占地空间小,单位体积对污染物的处理成本小,产生的活性粒子较多[12]。
二恶英是混合物,在实验条件下很难获取。氯苯与二恶英有类似的氯代结构,且研究[13]表明氯苯是二恶英生成的主要前驱物。贺鹏等[14]曾采用1,2,4-三氯苯作为二恶英的替代物进行模拟研究。关于低温等离子体去除汞和1,2,4-三氯苯,已有不少报道。郝硕硕[15]研究了电压、频率对低温等离子氧化汞的影响,得出电压、频率与汞去除率几乎呈线性正相关关系;张丽军[16]、马铭峰[17]研究了电源电压、频率、酸性烟气成分等对低温等离子同时去除汞和TCB的影响,结果表明,电压、频率的升高均使二者的去除率增大。已有研究多侧重于电压、频率及烟气成分对低温等离子同时去除汞和TCB的影响,未对脉宽、上升沿(指上升时间)进行探讨,未对能量作相应的分析,对机理的考察不明晰。
本研究以取材较易且同样具有多氯代苯环的1,2,4-三氯苯作为实验对象,使用低温等离子体技术同时去除气态的Hg0和二恶英的模拟物1,2,4-三氯苯(TCB),在已有研究的基础上,探讨了电压、频率、脉宽、上升沿各参数对二者同时去除的影响,通过对反应中的能量及反应产物的分析,探讨了脉冲电晕等离子体对Hg0及TCB的脱除机制,为脉冲电晕等离子体同时去除汞和二恶英的工业化提供参考。
全文HTML
-
本研究自行搭建了脉冲电晕放电低温等离子体实验平台,系统流程如图1所示。整个系统由气路系统、供电系统、放电系统、吸附检测系统组成。实验中Hg0由蒸发产生,氮气载入气路中。1,2,4-三氯苯由注射器注射,并用氮气载入汽化器,气化后进入混气瓶。TCB的沸点为213.5 ℃,系统全程伴热240 ℃,保证TCB能完全汽化且不在过程中冷凝。供电系统由电源和相应的示波器及探头组成,电源为反应系统提供能量,示波器监测波形及能量数据。实验采用参数化高压脉冲电源,电压最高可调到20 kV。采用线-筒式反应器,具体参数如下:内电极为钛丝,直径为1 mm;外电极为304不锈钢材料圆筒,内直径为47.7 mm,外直径为50 mm;整个反应筒体实际放电长度为400 mm,筒体两端为聚四氟乙烯材料。实际中垃圾焚烧烟气中氧气体积分数为12%~15%,本实验设定氧的体积分数为15%。整个气路系统总气体流量为4 L·min−1。实验用氮气作为载气和平衡气,载Hg0流量为1 L·min−1,载TCB流量为1 L·min−1,平衡气流量为1.4 L·min−1。气路系统中氧气流量为0.6 L·min−1。控制初始浓度:TCB约为10 mg·m−3,Hg0约为300 µg·m−3。用气相色谱-质谱仪(GC-MS)对TCB的浓度进行分析测定,使用《固定污染源废气-汞的测定 冷原子吸收分光光度法》(HJ 543-2009)中的方法对汞的浓度进行测定。
-
本实验以汞的氧化率、三氯苯的去除率作为脉冲电晕等离子体处理效果的评价指标。
式中:e(Hg)为Hg0氧化效率;cin为反应前Hg0浓度,µg·m−3;c1为反应后Hg0浓度,µg·m−3;e(TCB)为三氯苯去除率;cin为进口浓度,mg·m−3;cout为出口浓度,mg·m−3;c(TCB)为三氯苯浓度,mg·m−3;c液为吸收液中三氯苯浓度,mg·m−3;V液为吸收液体积,mL;T采样为采样时间,min;V采样为采样体积,L;P为能量,J;U为电压,kV;I为电流,A;f为频率,Hz;T为周期时间,ns。根据式(4)并结合Origin软件,计算处理并得到能量数据。
1.1. 实验系统
1.2. 分析方法
-
设定实验条件(实验条件均为输入值):频率为500 Hz,脉宽为100 ns,上升/下降沿为100 ns,脉冲电压调节为13~17 kV,步长为1 kV,实验结果如图2所示。参考实验现象,结合图2中的实验结果,可以看出:在脉冲电压为13 kV时,未听到反应器有放电嘶嘶声,体系基本未起晕;电压大于14 kV时,反应器有明显的放电嘶嘶声,证明体系已经起晕,有30%~40%的处理效果;电压大于17 kV时,反应器嘶嘶声强烈,且发生打火现象,即击穿电压为17 kV。
由图2可知,电压升高,Hg0和TCB的去除率增大,电压与二者的去除率均呈正相关关系。随着电压的升高,体系能量随之增大;在初始能量一致增加时,TCB和Hg0去除率的升高趋势几乎是同步的。在脉冲电压为17 kV时,对应的体系能量约为28 J,而此时Hg0的氧化率约为65%,TCB去除率约为70%。
-
当气体成分不变时,设定实验条件:脉冲电压为16 kV,脉宽为100 ns,上升/下降沿100 ns,频率调节为0~800 Hz,实验结果如图3所示。可以看出,频率增大带来体系能量的升高,Hg0和TCB的去除率随之增大。脉冲电压为16 kV,频率为800 Hz,脉宽为100 ns,上升/下降沿为100 ns时,对应计算得到的能量为30 J左右,此时,Hg0氧化去除率约为60%,TCB的去除率可达80%左右。
增大频率,体系能量随之增加。同时频率的增大意味着单位时间内脉冲的释放次数增多,等离子体中电子密度增加,相应地产生大量的活性基团。当频率大于500 Hz时,体系内会有大量的高能电子聚集,而TCB反应速率较Hg0有明显的加快,说明此时TCB在与Hg0的能量竞争中处于优势地位。
-
在脉冲电压为16 kV,频率为700 Hz,上升/下降沿为100 ns,调节脉宽为100~700 ns时,其他条件同上,实验结果如图4所示。
在脉冲电压为16 kV,频率为700 Hz,脉宽为100 ns,调节上升时间为50、100、150、250、300和400 ns时,其他条件同上,结果如图5所示。
由图4和图5可知,在实验可调节的参数范围内,利用等离子体同时处理Hg0和TCB,脉宽和上升时间的变化对二者的去除率的影响均不大。由表3可知,改变脉宽/上升沿,单脉冲能量变化相当微小。根据式(4)推算,脉宽/上升沿对总能量的影响也较小,因而对去除率的影响较小。
吴淑群等[18]定量研究了脉冲上升沿变化(4 µs~100 ns)对等离子体特性的影响,结果表明,当脉冲上升沿由4 µs下降至100 ns时,电子能量从1.25 eV上升至1.55 eV。本实验中随着上升沿由50 ns 升至400 ns,电子能量降低,但其能量变化较小,因此,Hg0+TCB的去除率并无明显变化。李威等[19]也对脉宽等参数对离子体发射光谱特性的影响做了研究,表明窄脉宽比宽脉宽得到的电子能量略高。本实验中脉宽变化对体系Hg0+TCB的去除的影响较小,可能是由于实验脉冲调节范围较小导致的。
-
为更好地了解降解机理,设定频率为500 Hz,脉宽为100 ns,上升沿/下降沿为100 ns。分别在电压为14 kV和电压为16 kV的条件下,利用GC-MS仪器,分析脉冲电晕等离子体同时去除Hg0和TCB的过程中产生的产物。
实验时设定的GC条件:采用HP-5ms色谱柱,程序升温,全扫方式,不分流进样,初始温度为50 ℃并保持1 min,以15 ℃ ·min−1的速度上升到170 ℃,并保持10 min。气化室温度为280 ℃,氦气以1 mL min−1的流速吹载样品,电子电离EI源70 eV,温度为230 ℃,前进样口温度为170 ℃,检测分析结果如图6和图7所示(匹配度均在90%以上)。
由图6和图7可知,在脉冲电晕低温等离子体同时去除Hg0和TCB时,利用GC-MS进行分析,得到的产物多是C5~C10的有机物碎片分子。在脉冲电压为14 kV的条件下,结果中有酮、苯环的衍生物;在脉冲电压为16 kV下,结果中检测到有酮等的化合物和含氮物质。这在一定程度上说明了TCB的降解途径。
在等离子体同时去除Hg0和TCB时,会产生酮类中间产物,说明等离子体放电产生的电子能量可使氧气中的氧双键断裂。而降解物质中有含氮物质,说明尽管N2(9.8 eV)的键能很大,但体系内仍有电子可达到这个能级,致使该键断裂。在脉冲电压为16 kV的条件下,注入反应器的能量足够高,未检测到含苯环物质,几乎实现了苯系化合物的全部降解。根据上述结果,可推测TCB的降解过程如下。在反应体系中,存在大量高能电子及·O、·H、·OH(OH─H键能为5.10 eV,低于O─O键能,推断可发生H2O+e→·OH+·H的反应)、HO2·等自由基。整个降解过程主要包括TCB断键开环和自由基发生结合反应2个环节。
1) TCB断键开环。TCB的分子式为C6H3Cl3,其不同号位的C─Cl键能顺序为C-Cl(2)<C-Cl(1)<C-Cl(4)。键能小的先断开,以此类推;其苯环上的大π键使得相邻的碳原子间存在着复杂的共轭关系,该键断裂主要是靠足够的电子能量与体系内的自由基反应开环[20],最终形成碳链物质,如图6和图7所示。
2)自由基结合。在断键开环的同时,体系内产生的各自由基粒子也会参与反应,发生氯原子的取代反应。进而活性粒子会进一步攻击各中间/瞬时产物,产生新的苯环衍生物,如图6中有含苯环物质;另一种途径就是被HO2·取代,生成苯甲酸,而后在高能电子作用下继而生成各种醇、酮等,如图6和图7中有酮类物质,随着降解过程的继续,最终得到CO2、H2O、HCl。推测TCB在脉冲电晕放电反应器中的降解过程如图8所示。
在低温等离子体单独去除Hg0时,主要是通过将其氧化为Hg2+,实现其去除转化[21]。低温等离子体单独对TCB的去除,主要是通过高能断键实现其降解[22]。本研究采用脉冲电晕低温等离子体同时处理Hg0和TCB,通过电源参数影响研究和产物分析,推测其过程可能存在体系内的能量竞争和复杂的自由基反应2个环节。
1)体系内的能量竞争。结合上文的能量分析,在Hg0和TCB二者同时去除的过程中,在能量达到一定程度后,即至少在25 J以上,去除效果较为理想。通过分析认为,导致这一现象的原因是,在本实验中,两者共存将体系内能量分散。Hg0及其他物质会分散作用于TCB断键的能量;同时TCB分散产生·O等自由基的能量。由图3可知:随着频率的增大,二者的去除快慢程度基本相当;当频率>500 Hz(即能量大于25 J)时,频率继续增大,Hg0氧化率的提高呈现逐渐放缓的趋势,但TCB的降解反应速率可以保持在较高的水平。由此推断,在频率>500 Hz时,TCB在能量的争夺中明显占优势,更容易从体系中获取并利用更多的能量。
2)复杂的自由基反应。系统发生放电后,体系内存在·OH、HO2·、·O、O3等多种活性基团的相互作用反应,体系内相当复杂。研究表明,对TCB降解起主要作用的是·OH自由基[23],对于Hg0的氧化起主要作用的则是·O、O3[24],因此,在二者同时取出时,可认为几乎不存在自由基争夺反应。从理论上讲,TCB降解产生的Cl也会氧化Hg0,促进其脱除。
可以看出,脉冲电晕低温等离子体去除汞和三氯苯,在共存体系下,存在着复杂的反应,且实际体系中会生成多种反应中间体及反应结合物质,它们之间的相互作用又会发生更加复杂的反应,具体的反应机理仍须进行深入研究。
2.1. 电压变化对脉冲电晕低温等离子体同时去除Hg0和TCB的影响
2.2. 频率变化对脉冲电晕低温等离子体同时去除Hg0和TCB的影响
2.3. 脉宽及上升时间变化对脉冲电晕低温等离子体同时去除Hg0和TCB的影响
2.4. 产物分析及机理探讨
-
1)电压、频率对脉冲电晕等离子体去除Hg0和TCB有重要影响;脉宽、上升沿参数对脉冲电晕等离子体去除Hg0和TCB的影响不大。
2)脉冲电晕等离子体同时去除Hg0和TCB的去除主要包括能量竞争和复杂的自由基反应。
3)在能量竞争中,TCB相对Hg0具有明显的优势。