-
目前,废水的脱氮除磷是解决环境水体富营养化问题的关键[1]。污水处理厂中氮元素的脱除主要是基于好氧硝化和缺氧反硝化的生物脱氮工艺。20世纪90年代,MULDER等[2]发现一种新型的厌氧氨氧化细菌,该菌在厌氧条件下以亚硝酸盐(
NO−2 )为电子受体,将铵(NH+4 )氧化成气态氮(N2),并产生少量硝酸盐(NO−3 )[3],这一过程称为厌氧氨氧化过程(anaerobic ammonium oxidation,Anammox)。Anammox反应与传统脱氮工艺(硝化/反硝化)系统相比,具有氮去除率更高,生物反应器体积更小,温室气体排放更低,污泥产量更低(90%)等优点[4-7]。因此,该工艺被广泛应用于高氨氨废水处理[8]。然而,厌氧氨氧化菌用于处理低基质市政废水仍然比较困难[9]。此外,JIN等[6]发现,各种底物和化学物质会影响厌氧氨氧化过程,其中包括游离氨(free ammonia,FA)、游离亚硝酸(free nitrous acid,FNA)、有机物质、盐、重金属、磷酸盐和硫化物。反应器运行方式分为连续式与间歇式2种。已有研究[10]表明,运行方式影响倒置A2/O工艺启动性能,间歇换水培养方式缩短启动时间,使污泥更快成熟,在脱氮除磷方面先达到最佳去除速率。JI等[11]和LI等[12]在氮负荷分别为630、104.8 mg·(L·d)−1时采用连续式运行,厌氧氨氧化功能菌丰度分别达到34.6%、40.2%;而DU等[13]和LI等[14]采用间歇式运行,氮负荷分别在100、280 mg·(L·d)−1时,厌氧氨氧化功能菌丰度分别为2.37%、5.01%。通过对比分析发现,连续式运行的厌氧氨氧化菌的相对丰度往往高于间歇式运行;但对于改变运行方式对于厌氧氨氧化菌影响的研究目前鲜有报道,对于厌氧氨氧化过程脱氮性能和菌群结构的影响的研究也不多。
本研究以厌氧移动床生物膜反应器为研究对象,在(25±1) ℃恒温、低基质(TN≤60 mg·L−1)条件下,由连续式运行改为间歇式运行,探究其对Anammox系统脱氮性能的影响,同时应用高通量测序方法分析系统微生物群落结构的变化,为实际污水处理厂的转型提供参考。
-
实验采用厌氧移动床生物膜反应器(anaerobic moving bed biofilm reactor,AMBBR)运行Anammox工艺。AMBBR所有部件均由有机玻璃加工而成,内径为15 cm,外径为26 cm,高为80 cm,有效体积为7.2 L。反应器用黑色遮光布覆盖,以避免光照对Anammox菌代谢的影响。反应器内部装有填料(直径为11 mm,体积分数为20%),作为微生物附着生长的载体。进水pH调节至7.2~7.8。反应器的外部为恒温水浴层,控制反应器温度为(25±1) ℃(图1)。
实验分为2个阶段:阶段1(0~39 d)采用连续式运行,流量为1.25 L·h−1,HRT为5.76 h;阶段2(40~110 d)采用间歇式运行,1个周期为3 h,进水45 min,厌氧混合105 min,沉淀15 min,出水13 min,闲置2 min。2个阶段的容积交换率均为55%。
-
反应器接种的污泥来自于长期运行的Anammox厌氧移动床生物膜反应器(AMBBR),该反应器在25 ℃下运行超过300 d。
实验使用的模拟废水为人工配制,其组成为:KHCO3 120 mg·L−1,K2CO3 27.5 mg·L−1,KH2PO4 126 mg·L−1,NH4Cl 91.7 mg·L−1,NaNO2153.8 mg·L−1,葡萄糖和淀粉各50 mg·L−1(少量有机物可以去除厌氧氨氧化产生的硝酸氮,提高总氮脱除率[15]);微量元素I和II各1 mL·L−1。微量元素浓缩液I组分为FeSO4·7H2O 9 000 mg·L−1,EDTA-Na 5 000 mg·L−1;微量元素浓缩液II组分为CoCl2·6H2O 400 mg·L−1,NiCl2·6H2O 810 mg·L−1,Na2MoO4·2H2O 250 mg·L−1,ZnCl2 210 mg·L−1,MnCl2·4H2O 360 mg·L−1。
-
水样经0.45 μm滤膜过滤后测定。水样COD经快速消解仪(5B-1B型)消解后,采用重铬酸钾法测定,pH采用雷磁PHS-3E型pH计测定,
NH+4 、NO−2 和NO−3 根据国家标准方法测定。总氮(TN)为NO−2 -N、NO−3 -N和NH+4 -N的加和。实验中所采用的污泥来自于2个阶段前后悬浮和附着2部分的污泥(第2天和第107天),一共4个样品,采样离心后,统一保存于−20 ℃冰箱中。从接种物和操作阶段结束时的污泥样品中提取DNA,用于PCR扩增,使用引物341F:CCTACGGGNGGCWGCAG和805R:GACTACHVGGGTATCTAATCC[16],委托上海生物工程有限公司完成测序。
-
厌氧氨氧化和反硝化的占比可以使用方程式[17]计算(式(1)和式(2)),平均进水氮负荷、总氮变化量、总氮的平均去除率和平均氮去除速率使用方程式[14]计算(式(3)~式(6)),功能基因的相对变化量使用方程式计算(见式(7))。
式中:u1为厌氧氨氧化比例;u2为反硝化比例;C1为进水氨氮浓度;C2为出水氨氮浓度;C3为进水总氮浓度;C4为出水总氮浓度;L为平均进水氮负荷;Vin为单位时间进水量;Vw为工作体积;T为单位时间;ΔC为总氮变化量;E为总氮的平均去除率;R1为平均氮去除速率;R为功能基因相对变化率;ΔA为功能基因相对丰度变化量;A为连续运行时功能基因的相对丰度。
-
通过蠕动泵将模拟废水加入反应器中,并控制改变运行方式前后的进水水质参数、日处理水量和反应器有效工作体积不变的条件下,保证平均进水氮负荷、水力停留时间分别为(227±13) mg·(L·d)−1和5.76 h。不同阶段反应器除氮性能如图2所示。
在阶段I(1~39 d),反应器在室温(25±1) ℃下连续运行,出水氨、亚硝酸盐氮和硝酸盐氮平均浓度分别为5.6、6.4和2.12 mg·L−1;铵、亚硝酸盐和总氮的平均去除率分别为76.7%、79.3%和74.3%,平均氮去除速率为(166±20) mg·(L·d)−1。在此阶段,测定的
ΔNO−2 -N/ΔNH+4 -N为1.31(图2(b)),接近厌氧氨氧化过程理论值1.32[3],说明反应器内氮脱除过程主要是由厌氧氨氧化菌反应而引起的,与图3的计算结果一致。同时,所测ΔNO−3 -N/ΔNH+4 -N为0.12。根据STROUS等[3]的报道,厌氧氨氧化过程中ΔNO3-N/ ΔNH+4 -N的理论值为0.26,可得出硝酸盐平均理论产生量(NO−3 -Ntp)为4.83 mg·L−1。然而,出水中硝酸盐平均浓度仅为2.12 mg·L−1,远低于STROUS等[3]报道的理论值。分析其原因,是由于反应器进水中含有低浓度的有机物,有56%的硝酸氮(2.71 mg·L−1)被异养反硝化作用还原生成氮气。理论上,还原2.71 mg·L−1硝酸氮,异养反硝化须消耗COD(1 mg硝酸氮还原消耗2.86 mg COD)7.75 mg·L−1,反应器中去除的COD为70.98 mg·L−1,COD的去除负荷为300 mg·(L·d)−1,表明反硝化有机碳源充足。在阶段II(39~110 d),将反应器从连续式运行改成间歇式运行,容积交换率为0.55,其他操作参数负荷与阶段I保持一致。结果表明,Anammox-SBR系统的脱氮性能逐步上升。在39~63 d,平均氮去除速率和平均总氮去除率约为189.1 mg·(L·d)−1和81.8%(图2(b)),至65 d达到最高,为220.3 mg·(L·d)−1和92.5%(图2(b)),其氨氮、亚硝氮及硝酸盐出水浓度分别为1.25、0.33和2.68 mg·L−1。在64~107 d,平均氮去除速率和平均总氮去除率约为210.4 mg·(L·d)−1和93.6%(图2(b)),此时硝酸盐氮理论产生量(
NO−3 -Ntp)为5.67 mg·L−1[3],实际平均出水硝酸盐氮浓度为0.53 mg·L−1(图2(a)),有将近90.6%的硝酸氮(5.14 mg·L−1)被还原,比阶段I硝酸氮还原率提高了近1.89倍。而COD的去除负荷为350 mg·(L·d)−1(图3),与阶段I相比,只提高了50 mg·(L·d)−1。可推测出,系统硝酸盐还原能力大幅度增强。高通量测序发现,具有部分反硝化作用的Pseudomonas菌[18]丰度出现明显升高,强化了部分反硝化过程,进而降低出水硝酸氮浓度。分析导致这种现象原因有2个。第一,间歇式运行对悬浮污泥具有良好的截留作用,反应器中的搅拌增强了系统整体传质效果,提高了反应速率,进而提高了出水水质。底物与微生物之间的实际接触决定了厌氧反应器的性能,有效的搅拌促进二者的良好接触,从而提高基质的降解和转化效率[19-21]。第二,间歇式运行时,基质浓度随时间的延长由高到低变化,在连续式运行时,反应基质始终维持在较低的水平。根据一级反应动力学可知,间歇式运行时,基质降解速率较快,氮负荷相同时,间歇式出水水质效果更好。阶段II测定的化学计量系数(∆NO2-N/∆
NH+4 -N)为1.31,∆NO3-N/∆NH+4 -N(RP)由阶段I的0.12下降为0.08(39~63 d),后下降为0.02(64~107 d)(图2(b))。在阶段I,厌氧氨氧化和反硝化脱除氮浓度分别为38.15 mg·L−1和2.71 mg·L−1;在阶段II前期(39~63 d),厌氧氨氧化和反硝化脱氮浓度分别为42.12 mg·L−1和3.80 mg·L−1(图3),与阶段I相比,厌氧氨氧化和反硝化脱氮浓度分别提高了3.97 mg·L−1和1.09 mg·L−1;在阶段II后期(64~107 d),厌氧氨氧化和反硝化脱氮浓度分别为44.78 mg·L−1和5.60 mg·L−1(图3),与阶段II前期(39~63 d)相比,厌氧氨氧化和反硝化脱氮浓度分别提高了2.66 mg·L−1和1.80 mg·L−1。这说明改变运行方式后,厌氧氨氧化与反硝化协同作用得到了明显强化,同时反硝化贡献率逐渐提高(图3)。 -
连续式和间歇式运行共产生了275 797个有效序列,其附属于2 770个OTU(3%差异),398个属和17个门。OTU数量和ACE指数表明,在不同的运行方式下,生物膜具有更高的群落丰富度。Simpson指数反映了活性污泥微生物群落多样性(表1)。Simpson指数越高,意味着微生物菌种多样性越低,在不同的运行方式下,悬浮污泥Simpson指数均高于生物膜样品。生物膜样品微生物菌种多样性较高,这与WANG等[22]研究结果一致,其原因是生物膜的形成有利于增加对环境压力的抵抗力。但是,改变运行方式后,悬浮污泥Simpson指数升高,而生物膜Simpson指数却出现下降。这可能是由于改变运行方式后,装置内部污泥量基本不变,但COD去除负荷增加,导致异养菌生长速率提高,污泥产量升高[23],进而将一些生长速率较慢的细菌洗脱,导致悬浮污泥多样性降低;而填料对于活性污泥有一定的截留作用,故生物膜污泥的多样性变化不大,甚至多样性升高。
在门水平上(图4),最丰富的门是Proteobacteria,其次是Chloroflexi、Bacteroidetes、Planctomycetes和Acidobacteria,这与大多数研究结果[24-27]一致。与连续运行相比,间歇运行时,Chloroflexi、Bacteroidetes和Acidobacteria的比例同时下降,具有厌氧氨氧化作用的Planctomycetes在附着污泥上相对丰度也出现明显的降低;而Proteobacteria、Ignavibacteriae和Candidatus Saccharibacteria出现了不同程度的上升。这些结果表明,改变运行方式会影响细菌群落的组成。
在厌氧氨氧化过程中,迄今已鉴定出5种厌氧氨氧化菌属,包括Candidatus Brocadia、Candidatus Kuenenia、Candidatus Scalindua、Candidatus Anammoxoglobus和Candidatus Jettenia[28]。 在本研究中,Candidatus Brocadia是厌氧氨氧化反应器中唯一的厌氧氨氧化菌属(图5),与大多数研究[11, 18, 29]相似。
改变运行方式后,作为厌氧氨氧化反应的功能菌Candidatus Brocadia丰度出现明显下降(图5)。推测其原因,可能是:在运行方式改变后,装置内部污泥量基本不变,但在COD去除负荷增加时,异养菌生长速率提高,导致污泥产量增加[23],从而使悬浮污泥中的Candidatus Brocadia丰度降低;同时生物膜Candidatus Brocadia丰度下降,可能是由于细胞微聚集体的Longilinea属[30]丰度下降而导致的。此外还发现,在2种不同的运行方式下,生物膜上的Candidatus Brocadia丰度高于悬浮污泥,这与LAURENI等[31]和LIU等[9]的研究结果一致。LIU等[9]认为,生长速率缓慢的微生物在废水处理系统中倾向于附着生长或形成簇,从而能承受更高的冲击负荷,并防止它们被流出物洗脱。
改变运行方式后,检测到Rhodobacter、Aquimonas、Denitratisoma、Haliscomenobacter、Terrimonas、Blastocatella[9, 18, 32-33],这些具有全程反硝化作用的菌属丰度出现不同程度降低。同时,Defluviimonas、Shinella、Paracoccus这几种具有全程反硝化作用的菌属丰度有所上升,其中具有部分反硝化作用的Pseudomonas丰度出现明显提高(生物膜11.5%,悬浮污泥42.3%)[18],因此,在间歇运行时,出水硝酸氮浓度明显降低。高通量检测结果还显示,反应器中存在少量能将氨氮氧化成亚硝酸氮的细菌(Chryseobacterium,Devosia,Chryseobacterium[34])以及能将亚硝酸氮氧化成为硝酸氮的细菌(Devosia[35])。这些好氧菌的存在可能是由于反应器上部有少量的空气,在搅拌时,反应体系有一个复氧的过程,这为好氧菌提供了一定的生存空间。此外,反应器中存在少量不具备脱氮作用的细菌。Saccharibacteria_genera_incertae_sedis属于Candidatus Saccharibacteria门,它们广泛分布于环境中[36]。Gemmobacter属包含兼性厌氧菌和异养细菌,它们可以促进大分子碳源的降解并转化为小分子碳化合物[37-38],具有降解有机化合物的能力,如糖、丙酮酸、甲醇、乙醇和酸[39]。这些好氧与异养菌的存在,消耗了反应器中存在的少量溶解氧和有机物,为厌氧氨氧化菌创造了有利的生存环境。
-
为深入了解改变运行方式后细菌微生物群的分子功能,对16S rRNA扩增子测序结果进行功能预测。基于COGs数据库,预测功能基因相对变化率,结果如图6所示。可以看出,改变运行方式后,RNA加工和修饰、碳水化合物的转运和代谢的功能基因下降,细胞外结构功能基因在悬浮污泥中出现下降而在生物膜当中出现明显上升;同时发现,细胞骨架的功能基因在悬浮污泥中出现上升而在生物膜当中出现明显下降,这与能形成细胞骨架的Longilinea属丰度降低的结论一致。而碳水化合物的转运和代谢的功能基因下降似乎与第1阶段中COD的去除负荷较低相悖,分析其原因,可能是因为连续运行时,系统COD长期处于一个较低的浓度,在这种“饥饿”的情况下,某些细菌须表达尽可能多的碳水化合物的转运和代谢的功能基因,摄取环境中的COD,来维持自身生长代谢需要。
-
1)在适量有机物的条件下,间歇式运行使具有短程反硝化功能的Pseudomonas菌的丰度明显升高,从而导致厌氧氨氧化和反硝化过程耦合作用增强,因此,系统获得更高的脱氮性能。
2)在适量有机物的条件下,间歇式运行使具有厌氧氨氧化作用的Candidatus Brocadia菌丰度降低。
3)在连续式和间歇式运行方式下,生物膜上的Candidatus Brocadia菌丰度高于悬浮污泥。
运行方式对低基质厌氧氨氧化系统脱氮及菌群结构的影响
Effect of operation modes on the nitrogen removal efficiency and microbial community structure of anammox process treating low substrate wastewater
-
摘要: 为了考察运行方式对厌氧氨氧化系统脱氮性能及菌群结构的影响,建立一套厌氧移动床生物膜反应器,在(25±1) ℃恒温、低基质(TN≤60 mg·L−1)条件下,分别以连续式和间歇式方式运行,采用高通量测序,基于直系同源蛋白簇基因(COGs),对16S rRNA扩增子测序结果进行功能预测,来表征微生物菌群结构和微生物功能的变化。结果表明:系统总氮负荷为(227±13) mg·(L·d)−1时,间歇式运行脱氮效率(90.6%)优于连续式运行效率(74.6%),生物膜厌氧氨氧化细菌的相对丰度高于悬浮污泥;反应器由连续式变为间歇式运行后,主要功能菌属Ca. Brocadia丰度降低,同时,具有部分反硝化作用的Pseudomonas菌丰度出现明显升高。进一步分析可知,在适量的有机物条件下,间歇式运行能够获得更好的厌氧氨氧化与反硝化协同处理效果。本研究结果可为污水处理厂的实际运行提供参考。Abstract: In order to investigate the effect of operation modes on the nitrogen removal performance and microbial community structure of anaerobic ammonia oxidation system, an anaerobic moving bed biofilm reactor was established, which was operated in a continuous flow mode and a batch mode at constant temperature of (25±1) ℃ and low substrate of TN≤60 mg·L−1, respectively, used high-throughput sequencing, and based on cluster of orthologous groups of proteins (COGs) gene, 16S rRNA amplicon sequencing results were functionally predicted to characterize microbial flora structure and microbial function changes. The results showed that the nitrogen removal efficiency for the batch mode was 90.6%, which was higher than 74.6% for the continuous operation mode at the total nitrogen load of 227±13 mg·(L·d)−1. And the relative abundance of anammox bacteria in biofilm was higher than that in the suspended sludge. When the continuous mode of the reactor changed to batch mode, the abundance of main functional genus Ca. Brocadia decreased, while the abundance of bacteria with partial denitrification function increased significantly. Through further analysis, the batch mode can obtain better synergistic treatment effect of anammox and denitrification than continuous mode with proper amount of organic matter. The study provides a reference for the actual operation of wastewater treatment plant.
-
Key words:
- continuous operation /
- intermittent operation /
- low substrate /
- microbial community
-
毒品属于精神活性物质,是一类使人体在吸收后产生生理和心理依赖的物质[1],主要包括阿片类的海洛因及吗啡(MOR)制品,可卡因、苯丙胺类的甲基苯丙胺(METH)、苯丙胺和摇头丸等[2-3],截至2020年底,联合国毒品和犯罪办公室及欧洲药物与成瘾监测中心(EMCDDA)共鉴定出1000余种精神活性物质[4-6]。根据《2021年世界毒品问题报告》的数据显示,去年全球约有2.75亿人接触过毒品,相比2010年增加了22%,在2019年,吸毒直接导致近50万人死亡,超过 5400 万人患精神障碍疾病或丧失生命[6],引发了极其严峻的全球公共卫生问题[7-9]。《2020年中国毒品形势报告》指出,由于疫情扩散蔓延,毒品泛滥态势仍然复杂但整体向好 ,截至2020年底,中国现有吸毒人员180.1万名,海洛因、冰毒等滥用品种仍维持较大规模[10],严重影响了社会治安并造成了极大的社会危害[11-15]。
毒品滥用是对公共卫生和社会安全的巨大威胁[16],并严重威胁着人体健康[17],毒品滥用趋势的实时预测和社会危害的准确评价是当前亟待解决的问题[18],基于污水流行病学发展而来的污水验毒技术恰好能够解决这一难题。冰毒和海洛因等传统毒品,经过人体吸食和代谢后,随着尿液排入各级污水处理系统并最终汇入环境。通过对环境样品的采集、处理和分析,可以直观获取环境中毒品母体及其代谢物的种类、浓度及变化趋势,结合数学模型计算,可反推目标区域的毒品滥用种类和滥用量[19]。该方法所得数据客观、时效性高,可用于不同区域横向比较,在估算传统毒品滥用量等方面发挥了巨大作用[20-24]。但在污水及河流等的传输过程中,由于本底因素复杂,目标物可能存在生物化学降解、吸附或其他转化过程[25]。不同水环境性质的差异对传统毒品及其代谢产物的稳定存在具有不同程度的影响[26]。Baker等[26]认为,中性水样中,METH具有较好的稳定性倾向[27]。但海洛因代谢产物6-单乙酰吗啡(6-MAM)非常不稳定,可进一步转化为MOR[28],在污水流行病学范畴内,海洛因的估算通常是以其代谢产物6-MAM作为标准进行的[29],但污水中,6-MAM的损失比例高达42%[26],从而该方法失效。张小寒[30]则认为pH值可通过影响水底质中悬浮物的表面电荷,使得水样中传统毒品含量测量值偏低。张春水等[31]认为,海洛因在碱性条件下会加速降解。此外,吕昱帆等[32]在其研究中发现盐析剂NaCl的使用对6-MAM及MOR的回收率具有不同程度的影响。
为明确水环境对METH、6-MAM和MOR的基质效应,本研究选取了山东省潍坊市11条不同河流的实际水样,测定相关水质参数,采用内标法和主成分分析法探讨基本水质参数对3种精神活性物质METH、6-MAM和MOR定量分析准确度的影响;设计不同梯度pH及氯离子浓度的模拟水样,加入定量METH、6-MAM和MOR并储存不同时间,测试分析其中目标物含量,验证pH、氯离子浓度及存储时间对3种精神活性物质检出浓度的影响。
1. 实验部分(Experimental section)
1.1 实验试剂与仪器
精神活性物质METH、6-MAM及MOR由山东省公安厅提供;氘代内标储备液MOR-D3、6-MAM-D3、METH-D8(100 μg·mL−1, 美国Cerilliant公司);实际水样来源于山东省潍坊市白浪河及利民河等处。主要化学试剂浓氨水、氢氧化钠、氯化钠、硝酸银、重铬酸钾、硫酸汞、高锰酸钾(分析纯,国药集团化学试剂有限公司),甲醇、二氯甲烷、甲酸(色谱纯,J&K百灵威公司)。
固相萃取仪(美国SUPELCO公司),Oasis MCX固相萃取小柱(美国Waters公司),0.45 μm微孔滤膜(天津津腾实验设备有限公司),氮吹仪(美国Organomation公司),XW-80A漩涡混合器(中国金昌实验仪器厂),三重四极杆液质联用仪(Thermo Scientific TSQ Quantiva LC-MS),水质多参仪(美国HACH公司),Milli-Q纯水机。
1.2 实验方法
1.2.1 毒品标准储备液的配制
用分析天平分别称取0.0500 g METH、6-MAM及MOR,逐级稀释溶解于色谱纯的甲醇中,得到浓度均为50 ng·mL−1的毒品标准储备液,超声45 min使其溶解完全。
1.2.2 不同pH、氯离子浓度模拟水样配制
取浓盐酸和NaOH,加入Milli-Q水中,配制pH值分别为2、4、7、10的溶液备用。称取NaCl固体,配制质量浓度为0、1、2、3、4、5 g·L−1的溶液。在50 mL模拟水样中分别加入毒品标准储备液100 μL,使METH、6-MAM及MOR的质量浓度均为100 ng·L−1,常温(25℃)下存储12 、24、36、48、72、120 h。
1.2.3 实际水样的采集
实验样品于2019年12月在山东省潍坊市内白浪河及利民河等11条河流中采集。每个采样点取水样1000 mL, 分为两份,均置于提前用甲醇和Milli-Q水洗净并烘干的棕色玻璃瓶中。采样结束后立即运回实验室,于 4 ℃冷藏。1份样品在48 h内处理完毕,另1份加入定量毒品标准储备液,使METH、6-MAM及MOR的质量浓度均为100 ng·L−1,常温保存72 h。同步参照国家标准测试温度、pH、氯离子浓度,化学需氧量等6项相关水质参数。
1.2.4 样品前处理
①过滤:将水样经过玻璃纤维滤膜(Whatman GF/F)过滤,去除悬浮颗粒物,收集滤液至少100 mL。②MCX小柱活化:依次将甲醇、Milli-Q水和 pH=2的水溶液通过MCX小柱,控制流速为1—2 mL·min−1,充分活化并平衡柱子。③配制MOR-D3、6-MAM-D3、METH-D8的内标溶液,浓度均为200 μg·L−1。④于pH=2的条件下加载已过滤并添加内标的样品,控制流速为1—2 mL·min−1。⑤对淋洗后的SPE小柱持续抽气20 min,直至MCX小柱完全干燥。依次用甲醇和氨水/甲醇溶液(5/100,质量比)洗脱干燥的Oasis MCX柱,并控制流速为1—2 mL·min−1。⑥收集洗脱液,33 ℃水浴下置于柔和的氮气流下吹至近干,用注射器取0.5 mL 20%的甲醇水溶液复溶氮吹残留物,涡旋振荡1 min,用注射器吸取溶液,用0.45 μm针头过滤器(Whatman)过滤并转移至HPLC-MS/MS专用样品瓶中,重复此操作一次。⑦样品测试前用0.2 μm滤膜过滤,滤液上机测试。
1.2.5 分析方法优化
流动相:0.12%甲酸和30 mmol·L−1甲酸铵超纯水溶液(A相);甲醇(B相),流速为0.3 mL·min−1,柱温为30 ℃,进样量为5 μL。以该液相色谱条件为初始方法[24],进一步手动优化,以获得对目标化合物的最高灵敏度(表1)。
表 1 HPLC-MS流动相洗脱梯度Table 1. HPLC-MS mobile phase elution gradient时间/min Time A/% B/% 0.0 95 5 3.0 70 30 6.0 20 80 6.5 10 90 8.0 10 90 8.5 95 5 11.0 95 5 质谱:离子源为电喷雾离子源(ESI),喷雾电压3500 V,离子传输管温度350 ℃,离子化模式为ESI(+);碰撞池气压(CAD)1.5 mTorr,鞘气压力(Sheath gas)为80 Arb,辅气压力(Aux gas)15 Arb。每种目标化合物及其相应内标的母离子和定量、定性离子的质荷比(m/z)见表2,其中,选取每种目标物丰度最大的离子对作为定量离子。
表 2 目标物测试质谱参数Table 2. Mass spectral parameters of the target compound化合物Compound 母离子Parent ion 定量离子Quantitative ion 定性离子Qualitative ion 保留时间/minRetention time m/z m/z DP/V CE/V m/z DP/V CE/V MOR 286 152.1 82 55 165 82 32 2.73 MOR-D3 289.2 152.1 80 55 165 80 41 2.72 METH 150.1 91.1 30 16 119.1 30 16 4.62 METH-D8 158.2 93.2 40 19 124.2 40 10.3 4.59 6-MAM 328.1 165.3 90 36 211.3 90 36 4.35 6-MAM-D3 331.1 165.1 90 38.3 211.2 90 25 4.36 2. 结果与讨论(Results and discussion)
2.1 分析方法的评价
2.1.1 回收率
取3种毒品储备液适量,配制成低、中、高浓度(100 ng·L−1、300 ng·L−1、400 ng·L−1)的质控样品,分别按相同的前处理方法平行操作;每一浓度进行双样本分析,根据当日标准曲线,计算样品测定浓度,得出METH、6-MAM和MOR的方法回收率,结果见表3。数据结果表明METH、6-MAM和MOR的回收率良好。
表 3 实验方法回收率、检出限及定量限Table 3. Experimental methods Recovery rate, detection limit and quantitation limit化合物Compound 加标浓度/(ng·L−1)Added 检出浓度/ (ng·L−1)Found 方法回收率/%Method recovery 检出限/(ng·mL−1) 定量限/(ng·mL−1) ILOD MLOD ILOQ MLOQ METH 400 377.0 94.25 0.2 0.0008 0.8 0.0032 300 304.9 101.63 100 102.6 102.60 6-MAM 400 384.2 96.05 0.2 0.0008 0.8 0.0032 300 283.7 94.57 100 101.4 101.4 MOR 400 418.0 104.50 0.2 0.0008 0.8 0.0032 300 294.8 98.27 100 102.3 102.3 2.1.2 线性范围、检出限及定量限
将低浓度目标物混合标准溶液上机测定,仪器检出限(ILOD)和仪器定量限(ILOQ)分别以3倍信噪比(S/N=3)和10倍信噪比(S/N=10)确定。方法检出限(MLOD)和方法定量限(MLOQ)分别通过以下公式计算得到:
MLOD(或MLOQ)=ILOD(或ILOQ)×200μL50mL 式中,200 μL为上机浓缩液的体积,50 mL为前处理所取水样的体积。
取混合毒品标准溶液适量,用流动相稀释,得质量浓度分别为1.5、3、6、12、25、50、100、150、200、250 ng·mL−1系列标准溶液。依次取上述各浓度标准溶液50 mL,按照相同的前处理方法操作,记录色谱图;以标准溶液中目标物的峰面积与同位素内标的峰面积之比为纵坐标(Y),进样浓度(X)为横坐标,进行线性回归运算,得METH、6-MAM和MOR回归方程:
Y=−0.040+0.033XR2=0.9996 Y=−0.044+0.023XR2=0.9998 Y=−0.042+0.023XR2=0.9992 结果表明METH、6-MAM及MOR质量浓度在1.5—250 ng·mL−1范围内线性关系良好,仪器的检出限和定量限见表3。
2.2 河流水质参数与毒品目标物检出浓度的相关性评价
水样温度、pH值、氯离子浓度、化学需氧量、氨氮、高锰酸盐指数和溶解氧等水质参数见表4。
表 4 样品水质参数Table 4. Water quality parameters of the samples样品名称Sample name 温度/℃Temperature pH 氯离子浓度/(mg·L−1)Chloride ion 化学需氧量/(mg·L−1)COD 氨氮/(mg·L−1)NH4+-N 高锰酸盐指数/(mg·L−1)Permanganate Index 溶解氧/(mg·L−1)DO YX 3.6 8.02 1.10×104 94.0 6.67 9.30 10.1 WS 7.0 8.27 9.09×102 9.50 3.81 11.6 9.50 BQ 2.6 8.34 2.25×102 24.0 1.22 6.70 13.1 GS 4.1 8.49 5.60×102 34.0 0.87 9.40 10.8 DH 2.6 8.50 1.30×103 41.0 0.89 10.0 11.6 BX 4.4 8.56 1.26×103 40.0 1.20 7.90 15.5 CZ 3.6 8.60 1.77×103 53.0 1.30 11.4 11.8 LZ -0.3 8.62 1.29×104 141 1.09 5.10 10.1 LX 0.6 8.64 1.24×104 126 0.88 10.5 14.0 XC 3.7 8.66 1.02×103 47.0 2.22 12.7 13.7 DX 4.3 8.68 1.13×103 39.0 1.08 10.5 14.2 检测水样中METH、MOR及6-MAM浓度(记为c1),在样品中均加入定量毒品标准储备液,使METH、6-MAM及MOR的质量浓度均为100 ng·L−1,常温保存72 h后按照2.3所述方法进行样品前处理,并检测3种毒品目标物加标后的浓度(记为c2),见表5。
表 5 样品加标前后三种毒品目标物的检出浓度Table 5. Detected concentrations of three drug targets before and after labeling样品名称Sample name METH/(ng·L−1) MOR/(ng·L−1) 6-MAM/(ng·L−1) c1 c2 c1 c2 c1 c2 YX 3.19 90.61 n.d. 6.99 n.d. 1.67 WS 2.15 98.73 1.97 25.15 1.25 23.85 BQ 1.13 103.19 3.05 44.63 n.d. 47.25 GS 3.35 99.54 n.d. 42.98 3.29 42.25 DH n.d. 91.70 n.d. 21.36 n.d. 7.37 BX 2.73 94.57 n.d. 19.41 3.12 11.03 CZ n.d. 90.50 3.26 20.41 n.d. 3.34 LZ n.d. 90.27 2.91 7.13 n.d n.d LX 1.59 92.11 2.29 4.59 n.d. 1.91 XC 3.41 95.85 n.d. 24.33 n.d. 26.29 DX 1.28 94.95 3.01 23.97 n.d. 4.01 对河流水质参数及METH、6-MAM和MOR加标后的浓度分别进行主成分分析,探讨7个河流水质参数与污水样品中目标物检出浓度的相关性。主成分分析过程在 SPSS 20.0软件包中进行。对所有数据进行Bartlett球形度检验,相伴概率小于0.05,进行 PCA 以获得分数图和因子载荷,经变量最大旋转后,提取出特征值大于1的因子,主成分分析如图1所示。
METH与pH及溶解氧存在较强的负相关性,说明pH或溶解氧的升高可能会导致其检出浓度的下降。MOR与6-MAM均呈现出与化学需氧量及氯离子浓度的强负相关,说明较高浓度的氯离子浓度可能造成MOR及6-MAM检出浓度不准确。此外,METH与氨氮存在明显的正相关,而水体中氨氮的主要来源是生物体代谢所产生的尿素,与人口高度密切相关。METH是中国滥用人数最多且最为广泛的毒品,氨氮浓度较大的流域为人口聚集区域,METH浓度也呈现聚集趋势。MOR及6-MAM是海洛因的代谢产物,稳定性较低,在因子分析中表现为与温度及高锰酸盐指数相关。高锰酸盐指数是反映水体中有机和无机可氧化物质污染的常用指标,结果表明在较高温度及氧化性较强的水环境中,MOR及6-MAM易于分解。
2.3 验证水质参数对模拟样品中毒品目标物的检出影响
根据实验结果,pH、氯离子浓度等均会不同程度影响3种毒品目标物的准确检出,故选取pH、氯离子浓度作为变量,设计单因素模拟实验验证其对毒品目标物稳定性的影响,此外,在应用污水验毒技术评估地区毒情及进行环境风险评估时,需要对污水及地表水中各毒品目标物进行精确定量,毒品母体及其生物标志物在不同水环境中驻留时间各不相同,也应考虑常温下不同存储时间对毒品目标物的检出影响。
2.3.1 pH对模拟样品中毒品目标物的检出影响
取pH=2、pH=4、pH=7、pH=10的模拟水样各50 mL,分别向其加入METH、6-MAM及MOR标准溶液及内标,按照1.2.4进行前处理,3种目标物的检出浓度见表6。
表 6 不同条件下模拟样品中目标物的检出浓度(ng·L−1)Table 6. Detected concentration of target in simulated samples under different conditions (ng ·L−1)条件梯度Condition Gradient METH/(ng·L−1) 回收率/%Recovery MOR/(ng·L−1) 6-MAM/(ng·L−1) MOR与6-MAM回收率/%Recovery pH 2 84.05±10.21 81.92±9.95 42.44±2.52 150.35±3.86 94.88±3.13 4 85.45±16.65 83.28±16.23 50.71±16.99 136.71±6.03 92.19±11.27 7 85.88±3.03 83.7±2.95 63.87±1.22 117.78±5.75 89.3±3.44 10 68.32±9.19 66.59±8.96 54.42±3.62 150.78±11.71 100.95±7.54 氯化钠浓度/(g·L−1) 0 57.33±1.71 55.88±1.67 34.57±0.04 81.45±0.26 57.06±0.15 1 66.99±5.53 65.29±5.39 46.97±0.77 17.49±1.13 31.58±0.94 2 54.11±1.22 52.74±1.19 33.16±1.22 0 16.21±0.6 3 53.39±1.86 52.04±1.81 38.10±0.74 0 18.62±0.36 4 50.96±3.76 49.67±3.66 35.46±1.04 0 17.33±0.51 5 55.85±0.94 54.43±0.92 37.54±2.25 0 18.35±1.1 存储时间/h 12 102.60±4.29 100±4.18 73.26±6.35 202.54±2.87 135.68±4.52 24 79.59±6.29 77.57±6.13 61.15±4.24 137.83±5.43 97.85±4.75 36 67.29±4.10 65.58±4 47.47±3.05 128.44±9.03 86.53±5.94 48 62.64±2.80 61.05±2.73 49.65±2.60 115.97±7.38 81.45±4.91 72 61.85±2.92 60.28±2.85 27.12±1.24 97.78±6.17 61.47±3.65 120 57.89±3.23 56.42±3.15 29.93±3.72 92.24±4.47 60.11±4.02 当pH=2时,模拟样品中METH的回收率在71.97%—91.87%之间,pH值升高至4和7时,METH回收率为67.05%—99.51%,基本不变, pH升高至10时,METH的回收率明显降低,为57.63%—75.55%,即pH对METH的准确检出有影响,当水体呈现酸性及中性时,METH可以稳定存在并准确检出,在碱性水体中,METH稳定性发生改变,检出浓度下降,与实际水体因子分析的结论相符。原因可能为,在不同的pH体系中,METH的电离度及形态发生了变化。METH的结构中含有碱性的氨基官能团,溶液的pH会影响其质子化/去质子化的过程,此外,含胺类物质在水溶液中易发生光降解,且光解行为与氨基上N电子与三重激发物的转移有关,在低pH条件下,氢离子与N电子结合,阻碍了N电子向活性物的转化从而抑制其光降解,反之,N电子的可用性增强,加速了METH的降解[30]。模拟样品中,MOR在中性条件下检出浓度最高,酸性或碱性的条件下降低。6-MAM的变化趋势与其相反,中性条件下,其检出浓度最低,在酸性及碱性环境中,检出浓度较高,即pH也会干扰MOR和6-MAM在水体中的准确定量,张春水等[33]在研究中发现,海洛因的化学形式在不同pH环境下存在变化,当pH升高时,水解反应加剧,发生6-MAM向MOR的转化。实验结果对实际水体的主成分分析结果进行了补充,可知MOR在中性水体环境中较稳定,6-MAM在酸性条件下更稳定。
由图2可见,不同pH条件下, 6-MAM与MOR的浓度变化规律各不相同,两者呈现相反的趋势,在碱性水体环境中易发生6-MAM向MOR的转化,与张春水等[31]提出的海洛因在碱性条件下加速降解成MOR的结论一致。
在实际污水验毒工作中,6-MAM与MOR均被用来估算海洛因滥用量,在pH值为2、4、7、10时,6-MAM与MOR的回收率之和分别为95%、92%、89%和100%,可知pH对于二者的定量分析及海洛因滥用量的准确估算影响较小。
2.3.2 氯离子浓度对模拟样品中毒品目标物的检出影响
取不同氯离子浓度梯度的模拟水样各50 mL,分别加入METH、6-MAM及MOR标准溶液和内标,按照1.2.4节进行前处理,结果见表6。氯化钠浓度为0 g·L−1时,3种目标物都能在模拟水环境中稳定存在。METH的检出浓度随氯离子浓度升高基本不变;MOR的检出浓度在氯化钠浓度为1 g·L−1时最高,为47.74 ng·L−1,其它浓度时在31.94—39.79 ng·L−1范围内小幅波动,因此氯离子浓度的增大对MOR的稳定性存在负影响,与2.2主成分分析所得结论吻合;6-MAM的浓度随氯离子浓度的升高变化较大,在超过2 g·L−1的氯离子浓度的水环境中不能检出。吕昱帆等[32]在对腐败血中6-MAM和MOR的检出研究中发现,在2.5 mL样品中,加入盐析剂NaCl的质量大于30 mg时,6-MAM及MOR的回收率显著降低,与2.3.2节实验结果吻合,故氯离子浓度的影响在实际应用污水验毒技术的过程中不可忽略。
2.3.3 存储时间对模拟样品中毒品目标物的检出影响
对常温(20℃)下存储不同时间的模拟水样进行前处理和定量分析,结果见表6。常温存储会使METH、6-MAM及MOR的浓度均下降,METH在120 h内降解35%左右,6-MAM在120 h内降解50%左右,MOR在120 h内降解达到了60%,即常温存储会造成METH、6-MAM及MOR在水中降解。
3. 结论(Conclusion)
(1)本文研究了山东省潍坊市的11条河流中,不同水质参数与传统精神活性物质METH、MOR、6-MAM检出浓度的相关性,运用主成分分析法进行相关性评价。结果表明,METH与pH及溶解氧存在较强的负相关,与氨氮存在明显的正相关;MOR与6-MAM均与化学需氧量及氯离子浓度负相关,与其它水质参数相关性较小。
(2)根据实际水样主成分分析结果,选取相关性较大的水质参数进行单因素模拟实验,结果表明,METH在中性及酸性环境下较稳定,MOR在中性条件下较稳定,6-MAM在酸性和碱性条件下均能稳定存在和准确检出;METH的检出几乎不受氯离子浓度的影响,但6-MAM及MOR受氯离子浓度的影响较大;常温(20℃)保存120 h后,METH、6-MAM和MOR的含量均有不同程度的下降。
-
表 1 改变运行方式后DNA样品的微生物丰富度和多样性评估
Table 1. Evaluation of microbial richness and diversity of DNA samples after the change of operation mode
样品 OTU/个 ACE指数 Shannon指数 Simpson指数 悬浮污泥-I 768 1 185.51 2.94 0.13 悬浮污泥-I 586 649.83 2.74 0.19 生物膜-II 834 1 216.77 3.54 0.07 生物膜-II 582 770.32 3.65 0.05 -
[1] XU X C, QIU L Y, WANG C, et al. Achieving mainstream nitrogen and phosphorus removal through simultaneous partial nitrification, anammox, denitrification, and denitrifying phosphorus removal (SNADPR) process in a single-tank integrative reactor[J]. Bioresource Technology, 2019, 284: 80-89. doi: 10.1016/j.biortech.2019.03.109 [2] MULDER A, VANDEGRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. doi: 10.1111/j.1574-6941.1995.tb00281.x [3] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340 [4] VAN DONGEN U, JETTEN M S, VAN L, et al. the SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Water Science & Technology, 2001, 44(1): 153-160. [5] SIEGRIST H, SALZGEBER D, EUGSTER J, et al. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal[J]. Water Science & Technology, 2008, 57(33): 383-388. [6] JIN R C, YANG G F, YU J J, et al. The inhibition of the anammox process: A review[J]. Chemical Engineering Science, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014 [7] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032 [8] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. doi: 10.1016/j.watres.2010.08.018 [9] LIU W R, YANG D H, CHEN W J, et al. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures[J]. Bioresource Technology, 2017, 231: 45-52. doi: 10.1016/j.biortech.2017.01.050 [10] 凌琪, 曾麒峰, 伍昌年, 等. 不同换水方式在污泥培养驯化中的比较及在倒置A2/O启动研究[J]. 应用化工, 2015, 44: 991-994. [11] JI J T, PENG Y Z, MAI W K, et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment[J]. Bioresource Technology, 2018, 270: 570-579. doi: 10.1016/j.biortech.2018.08.124 [12] LI X J, SUN S, YUAN H Y, et al. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: Long-term performance and microbial community dynamics[J]. Water Research, 2017, 125: 298-308. doi: 10.1016/j.watres.2017.08.048 [13] DU R, CAO S B, LI B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. doi: 10.1016/j.watres.2016.10.051 [14] LI Q, WANG S P, ZHANG P D, et al. Influence of temperature on an Anammox sequencing batch reactor (SBR) system under lower nitrogen load[J]. Bioresource Technology, 2018, 269: 50-56. doi: 10.1016/j.biortech.2018.08.057 [15] LI X, LU M Y, QIU Q C, et al. The effect of different denitrification and partial nitrification-Anammox coupling forms on nitrogen removal from mature landfill leachate at the pilot-scale[J]. Bioresource Technology, 2019, 297: 1-9. [16] ZHENG Z M, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration[J]. Bioresource Technology, 2019, 283: 213-220. doi: 10.1016/j.biortech.2019.01.148 [17] DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-anammox: A method for high nitrate wastewater treatment[J]. Environment International, 2019, 126: 707-716. doi: 10.1016/j.envint.2019.03.007 [18] WANG D P, LI T, HUANG K L, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655: 1355-1363. doi: 10.1016/j.scitotenv.2018.11.321 [19] KARIM K, HOFFMANN R, KLASSON T, et al. Anaerobic digestion of animal waste: Waste strength versus impact of mixing[J]. Bioresource Technology, 2005, 96: 1771-1781. doi: 10.1016/j.biortech.2005.01.020 [20] KARIM K, KLASSON T, HOFFMANN R, et al. Anaerobic digestion of animal waste: Effect of mixing[J]. Bioresource Technology, 2005, 96: 1607-1612. doi: 10.1016/j.biortech.2004.12.021 [21] 刘刈, 王智勇, 孔垂雪, 等. 沼气发酵过程混合搅拌研究进展[J]. 中国沼气, 2009, 27(3): 26-30. doi: 10.3969/j.issn.1000-1166.2009.03.006 [22] WANG C, LIU S T, XU X C, et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere, 2018, 203: 457-466. doi: 10.1016/j.chemosphere.2018.04.016 [23] 袁青彬, 郭美婷, 杨健. 污泥负荷对生物处理系统耐药细菌的影响研究: 以活性污泥法中磺胺嘧啶抗性异养菌为例[J]. 中国环境科学, 2014, 34(8): 1979-1984. [24] WANG G P, ZHANG D, XU Y, et al. Comparing two start up strategies and the effect of temperature fluctuations on the performance of mainstream anammox reactors[J]. Chemosphere, 2018, 209: 632-639. doi: 10.1016/j.chemosphere.2018.06.134 [25] GONZALEZ-GIL G, SOUGRAT R, BEHZAD A R, et al. Microbial community composition and ultrastructure of granules from a full scale anammox reactor[J]. Microbial Ecology, 2015, 70(1): 118-131. doi: 10.1007/s00248-014-0546-7 [26] LEIX C, DREWES J E, KOCH K, et al. The role of residual quantities of suspended sludge on nitrogen removal efficiency in a deammonifying moving bed biofilm reactor[J]. Bioresource Technology, 2016, 219: 212-218. doi: 10.1016/j.biortech.2016.07.134 [27] WANG S, LIU Y, NIU Q, et al. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules[J]. Bioresource Technology, 2017, 236: 119-128. doi: 10.1016/j.biortech.2017.03.164 [28] NARITA Y K, ZHANG L, ZENICHIRO K, et al. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sapporoensis’[J]. Systematic and Applied Microbiology, 2017, 40(7): 448-457. doi: 10.1016/j.syapm.2017.07.004 [29] YANG H, LI D, ZENG H P, et al. Long-term operation and autotrophic nitrogen conversion process analysis in a biofilter that simultaneously removes Fe, Mn and ammonia from low-temperature groundwater[J]. Chemosphere, 2019, 222: 407-414. doi: 10.1016/j.chemosphere.2019.01.143 [30] KRAGELUND C, THOMSEN T R, MIELCZAREK A T, et al. Eikelboom’s morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum Chloroflexi[J]. FEMS Microbiology Ecology, 2011, 76(3): 451-462. doi: 10.1111/j.1574-6941.2011.01065.x [31] LAURENI M, FALÅS P, ROBIN O, et al. Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101: 628-639. doi: 10.1016/j.watres.2016.05.005 [32] LI S S, PENG C R, CHENG T S, et al. Nitrogen-cycling microbial community functional potential and enzyme activities in cultured biofilms with response to inorganic nitrogen availability[J]. Journal of Environmental Sciences, 2019, 76: 89-99. doi: 10.1016/j.jes.2018.03.029 [33] WANG S, ZHENG D, WANG S, et al. Remedying acidification and deterioration of aerobic post-treatment of digested effluent by using zero-valent iron[J]. Bioresource Technology, 2018, 247: 477-485. doi: 10.1016/j.biortech.2017.09.078 [34] KUNDU P, PRAMANIK A, DASGUPTA A, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by Chryseobacterium sp. R31 isolated from abattoir wastewater[J/OL]. [2019-09-10]. BioMed Research International, 2014: 1-12. http://dx.doi.org/10.1155/2014/436056. [35] DING S, BAO P, WANG B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339: 180-188. doi: 10.1016/j.cej.2018.01.128 [36] GU Y Q, LI T T, LI H Q, et al. Biofilm formation monitored by confocal laser scanning microscopy during startup of MBBR operated under different intermittent aeration modes[J]. Process Biochemistry, 2018, 74: 132-140. doi: 10.1016/j.procbio.2018.08.032 [37] WU H, GUO C Y, YIN Z H, et al. Performance and bacterial diversity of biotrickling filters filled with conductive packing material for the treatment of toluene[J]. Bioresource Technology, 2018, 257: 201-209. doi: 10.1016/j.biortech.2018.02.108 [38] PARK Y, CHO H, YU J, et al. Response of microbial community structure to pre-acclimation strategies in microbial fuel cells for domestic wastewater treatment[J]. Bioresource Technology, 2017, 233: 176-183. doi: 10.1016/j.biortech.2017.02.101 [39] HAO L P, BIZE A, CONTEAU D, et al. New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions[J]. Water Research, 2016, 102: 158-169. doi: 10.1016/j.watres.2016.06.014 -