-
随着工业生产的发展,致酸性气体大量排放,导致环境中酸沉降严重;加之农业生产中氮肥的不合理施用,我国土壤的酸化程度日益加剧[1]。酸化导致土壤整体质量下降,交换性酸增加,盐基离子流失过快,有效肥力下降,有机质含量减少,影响了作物的生长。其中,强酸化土壤危害更为严重[2-3],探索研究有效的酸化土壤的改良方法显得尤为重要。
现有的酸化土壤改良方法能起到一定效果,但也存在不足。施加生石灰的传统方法能快速提升土壤pH,是目前的主流方法。但大量或长期施用易导致土壤板结,不利于作物生长[4]。据冀建华等[5]报道,施用磷石膏、碱渣等工业副产品也能降低土壤酸度,但会导致土壤中阳离子成分失衡,且其中可能含有重金属成分。施用养殖废弃物、作物秸秆及其制备的生物炭碱性较低,对于强酸化土壤改良效果不明显[6-7]。同时,大量施加上述改良剂短时间内不宜农作物种植,需要通过长时间的缓耕或休耕,如此改良后的土壤还可能出现复酸情况[8],且在种植过程中仍需施加大量肥料。
据汤秋云等[9]研究发现,蛋白多肽可作为一种高效有机肥促进植物生长(5~7 d变绿,肥效持久),并且蛋白多肽呈碱性。基于此,本研究根据蛋白多肽既具有生石灰的优点,又具有有机肥的功能,研究其对强酸化土壤的改良效应,以期达到施肥就能直接解决土壤酸化问题,实现强酸化土壤改良与作物种植同步化进行,克服强酸化土壤改良过程中不能种植的缺点。
蛋白多肽对强酸化土壤的改良效应
Improvement effects of polypeptide on strongly acidified soil
-
摘要: 以强酸化土壤(pH为4.30)为研究对象,以蛋白多肽为新型土壤改良剂,将传统施加生石灰的酸化土壤治理技术和施加复混肥的常规种植技术为对照,研究蛋白多肽对强酸化土壤的改良效应。结果表明:土培实验中的蛋白多肽与生石灰对强酸化土壤均有碱化效应,将土壤pH分别提高了0.23和0.30 (120 d稳定值),而复混肥碱化程度较低(提高0.02);同时,蛋白多肽组与生石灰组土壤交换性酸含量比复混肥组(35.93 mmol·kg−1)分别降低了12.56 mmol·kg−1和18.68 mmol·kg−1,盐基饱和度分别比复混肥组(67.30%)高7.01%和9.85%;蛋白多肽组土壤有机质含量(19.96 g·kg−1)变化尤为明显,并且,显著高于复混肥组(8.58 g·kg−1)和生石灰组(12.23 g·kg−1)。蛋白多肽与生石灰均能提高强酸化土壤pH,但未能一次性达到6.5以上的中性程度。基于此,以结球甘蓝为供试植物,研究此背景下的种植情况。结果显示,蛋白多肽可在偏低pH条件下种植出高产的结球甘蓝,比其他组合效果明显,其平均生物量(371.78 g)比复混肥组和生石灰组分别高9.54倍和1.90倍。蛋白多肽具有改良强酸化土壤的潜力,并能达到改良与种植同步化(蛋白多肽施加后直接种植作物幼苗)。研究结果可为强酸化土壤的改良与种植提供参考。Abstract: In this study, compared with conventional acidified soil remediation technology with quicklime addition and conventional planting technology with compound fertilizer addition, the improvement effect of polypeptide as a new type of soil amendment on strongly acidified soil was investigated. The results show that polypeptide and quicklime had alkalization effect on the strongly acidified soil during soil culture experiments, the soil pH increased by 0.23 and 0.30 (120 d stable value), respectively, while the alkalization degree of compound fertilizer treated soil was lower (0.02). At the same time, the exchangeable acidity contents of polypeptide treated soil (12.56 mmol·kg−1) and quicklime treated soil (18.68 mmol·kg−1) were lower than that of compound fertilizer group (35.93 mmol·kg−1), respectively; and their base saturation percentages were 7.01% and 9.85% higher than that of the compound fertilizer group (67.30%), respectively. And the change of soil organic matter content in the polypeptide treated soil (19.96 g·kg−1) was remarkable, and significantly higher than that in the compound fertilizer treated soil (8.58 g·kg−1) and quicklime treated soil (12.23 g·kg−1). Polypeptide and quicklime treatment could increase the pH of strongly acidified soil, while it could not reach the neutral pHs higher than 6.5 at one time. Based on above results, cabbage was used as the experimental plant to study whether it could be planted under this background. The results showed that high-yield cabbage could be planted in polypeptide treated soil at low pH, and this significant effect was proved by its average biomass of 371.78 g which was 9.54 and 1.90 times higher than that in the compound fertilizer and quicklime treated soil, respectively. Polypeptide had the potential for strongly acidified soil improvement, and could achieve the synchronization of improvement and planting (directly planting crop seedlings after polypeptide addition). This study provides reference for strongly acidified soil improvement and the following plant planting.
-
Key words:
- polypeptide /
- strongly acidified soil /
- soil improvement /
- plant cultivation
-
表 1 蛋白多肽对培养土壤交换性酸含量的影响
Table 1. Effect of polypeptide on the exchangeable acidity in culture soil
处理组别 交换性酸/
(mmol·kg−1)交换性氢/
(mmol·kg−1)交换性铝/
(mmol·kg−1)CK 35.93±1.77b 6.56±1.14a 29.38±2.06b SH 17.25±2.81c 2.97±0.46b 14.28±1.35c KOH 44.23±4.87a 2.10±0.21b 42.12±3.71a KDT 23.37±2.87c 2.97±0.18b 20.41±1.05c 注:表中数据采用LSD法多重比较,同列数据不同小写字母表示处理间在P<0.05水平下差异显著。 表 2 蛋白多肽对培养土壤交换性能的影响
Table 2. Effect of polypeptide on the exchange capacity of culture soil
处理组别 交换性钠/
(cmol·kg−1)交换性钾/
(cmol·kg−1)交换性钙/
(cmol·kg−1)交换性镁/
(cmol·kg−1)交换性盐基总量/
(cmol·kg−1)CEC/
(cmol·kg−1)盐基
饱和度/%CK 0.08±0.01b 3.00±0.08b 3.16±0.09c 0.39±0.07a 6.64±0.09c 9.87±0.13c 67.30 SH 0.10±0.05b 3.35±0.23a 7.98±0.19a 0.52±0.02a 11.94±0.83a 13.70±0.18a 87.15 KOH 0.10±0.05b 2.74±0.10c 2.59±0.28d 0.40±0.11a 5.83±0.32c 11.23±0.56b 51.95 KDT 0.25±0.08a 3.51±0.16a 4.66±0.19b 0.49±0.08a 8.90±0.25b 11.98±0.15b 74.31 注:表中数据采用LSD法多重比较,同列数据不同小写字母表示处理间在P<0.05水平下差异显著。 -
[1] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008-1010. doi: 10.1126/science.1182570 [2] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. [3] 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6): 1900-1908. [4] LI G D, CONYERS M K, HELYAR K R, et al. Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia[J]. Geoderma, 2019, 338: 236-246. doi: 10.1016/j.geoderma.2018.12.003 [5] 冀建华, 李絮花, 刘秀梅, 等. 硅钙钾镁肥对南方稻田土壤酸性和盐基离子动态变化的影响[J]. 应用生态学报, 2019, 30(2): 583-592. [6] CAI Z J, XU M G, WANG B R, et al. Effectiveness of crop straws, and swine manure in amelior-ating acidic red soils: A laboratory study[J]. Journal of Soils and Sediments, 2018, 18: 2893-2903. doi: 10.1007/s11368-018-1974-7 [7] DAI Z M, WANG W N, Niaz Muhammad, et, al. The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH[J]. Soil Chemistry, 2014, 78(5): 1606-1620. [8] GUO A, DING L J, TONG Z, et al. Microbial response to CaCO3 application in an acid soil in southern China[J]. Journal of Environmental Sciences, 2019, 5: 321-329. [9] 汤秋云, 高琪, 李思彤, 等. 污泥蛋白肽对土壤微生态及植物生长调控[J]. 环境工程学报, 2015, 9(11): 5611-5616. doi: 10.12030/j.cjee.20151176 [10] 张楠. 结球甘蓝在中国的引种与本土化研究(明清至民国)[D]. 南京: 南京农业大学, 2015. [11] 牛振明, 张国斌, 刘赵帆, 等. 氮素形态及配比对甘蓝养分吸收、产量以及品质的影响[J]. 草业学报, 2013, 22(6): 68-76. doi: 10.11686/cyxb20130609 [12] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [13] 陆志敏, 潘根兴, 郑聚锋, 等. 不同状态样品培养下太湖地区黄泥土好气呼吸与CO2产生潜力[J]. 生态环境, 2007, 16(3): 987-993. [14] 中华人民共和国农业部. 土壤检测标准第2部分: 土壤pH的测定: NY/T 1121.2-2006[S]. 北京: 中国农业出版社, 2006. [15] 中华人民共和国农业部. 土壤检测标准第6部分: 土壤有机质的测定: NY/T 1121.6-2006[S]. 北京: 中国农业出版社, 2006. [16] 中华人民共和国农业部. 土壤检测标准第4部分: 土壤容重的测定: NY/T 1121.4-2006[S]. 北京: 中国农业出版社, 2006. [17] 中华人民共和国农业部. 土壤检测标准第13部分: 土壤交换性钙和镁的测定: NY/T 1121.13-2006[S]. 北京: 中国农业出版社, 2006. [18] 中华人民共和国林业局. 森林土壤阳离子交换量的测定: LY/T 1243-1999[S]. 北京: 中国标准出版社, 1999. [19] 中华人民共和国环境保护部. 土壤可交换酸度的测定: HJ 649-2013[S]. 北京: 中国环境科学出版社, 2013. [20] 中华人民共和国农业部. 酸性土壤铵态氮、有效磷、速效钾的测定: NY/T 1849-2010[S]. 北京: 中国农业出版社, 2010. [21] 朱经伟, 李志宏, 刘青丽, 等. 石灰对酸化黄壤整治烟田土壤酸度的影响及其应用效果[J]. 中国土壤与肥料, 2016, 6(3): 43-48. doi: 10.11838/sfsc.20160307 [22] 汪吉东, 许仙菊, 宁运旺, 等. 土壤加速酸化的主要农业驱动因素研究进展[J]. 土壤, 2015, 47(4): 627-633. [23] 孔晓玲, 季国亮. 我国南方土壤的酸度与交换性氢铝的关系[J]. 土壤通报, 1992, 23(5): 203-204. [24] 何淑勤, 吴雯, 郑子成, 等. 植茶年限对土壤酸度及其团聚体交换性酸分布的影响[J]. 环境科学研究, 2019, 32(2): 317-323. [25] LI Y, SUN J, TIAN D S, et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification[J]. Science of the Total Environment, 2018, 615: 1535-1546. doi: 10.1016/j.scitotenv.2017.09.131 [26] 李学垣. 土壤化学[M]. 北京: 高等教育出版社, 2001. [27] JIANG J, WANG Y P, YU M X, et al. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils[J]. Chemical Geology, 2018, 501: 86-94. doi: 10.1016/j.chemgeo.2018.10.009 [28] GRUBA P, MULDER J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils[J]. Science of the Total Environment, 2015, 511: 655-662. doi: 10.1016/j.scitotenv.2015.01.013 [29] ZHANG X M, LIU W, ZHANG G M, et al. Mechanisms of soil acidification reducing bacterial diversity[J]. Soil Biology and Biochemistry, 2015, 81: 275-281. doi: 10.1016/j.soilbio.2014.11.004 [30] NILSSON S I, ANDERSSON S, VALEUR I, et al. Influence of dolomite lime on leaching and storage of C, N and S in a spodosol under Norway spruce (Picea abies (L.) Karst.)[J]. Forest Ecology and Management, 2001, 146(1/2/3): 55-73. [31] HAO T X, ZHU Q C, ZENG M F, et al. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system[J]. Plant and Soil, 2019, 434: 167-184. doi: 10.1007/s11104-018-3760-0 [32] 曾廷廷. 红壤区作物产量对酸化的响应及pH阈值[D]. 贵阳: 贵州大学, 2017.