Loading [MathJax]/jax/output/HTML-CSS/jax.js

改进型农村三格化粪池的污水处理性能

王立东, 刘德明, 马世斌, 傅振东, 李伊然, 薛藏藏. 改进型农村三格化粪池的污水处理性能[J]. 环境工程学报, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025
引用本文: 王立东, 刘德明, 马世斌, 傅振东, 李伊然, 薛藏藏. 改进型农村三格化粪池的污水处理性能[J]. 环境工程学报, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025
WANG Lidong, LIU Deming, MA Shibin, FU Zhendong, LI Yiran, XUE Zangzang. Sewage treatment performance of modified rural three-chamber septic tank[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025
Citation: WANG Lidong, LIU Deming, MA Shibin, FU Zhendong, LI Yiran, XUE Zangzang. Sewage treatment performance of modified rural three-chamber septic tank[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025

改进型农村三格化粪池的污水处理性能

    作者简介: 王立东(1995—),男,硕士研究生。研究方向:水处理技术等。E-mail:hldove@126.com
    通讯作者: 刘德明(1963—),男,学士,教授。研究方向:建筑给排水等。E-mail:fd-ldm@163.com
  • 基金项目:
    福州大学与福建省融旗建设工程有限公司“农村化粪池改进技术研究”合作项目(00501765)
  • 中图分类号: X703

Sewage treatment performance of modified rural three-chamber septic tank

    Corresponding author: LIU Deming, fd-ldm@163.com
  • 摘要: 在我国农村地区,化粪池仍然是许多家庭生活污水直排前的唯一处理设施。传统三格化粪池出水水质较差,造成了农村水环境污染,而对传统三格化粪池进行适当改进是解决污染问题的有效途径之一。为此,对传统三格化粪池进行了结构和功能的优化设计,在第1格设置由过流板隔开的预处理曝气池和预处理沉淀池,第2格保留厌氧发酵池,第3格由过流板分隔为生物接触氧化池和二次沉淀池。结果表明,稳定运行后,反应器对COD、NH+4-N、TP和SS的去除率分别为83.51%~88.56%、66.82%~74.17%、77.47%~81.12%和82.26%~88.57%,相较于传统三格化粪池有显著的提升。改进型农村三格化粪池实现了农村分散式污水的就地处理,且经济性和维护便利性符合农村污水处理设施的定位需求,可为农村三格化粪池的改造和新建提供参考。
  • 砷在地壳和天然矿物中广泛存在,也是世界各地水生态系统的主要污染物之一[1-2]。砷在地下水中主要以As(Ⅲ)和As(Ⅴ)形态存在,由于As(Ⅲ)更容易被细胞摄取,故其毒性比As(Ⅴ)更强[3]。砷污染地下水广泛分布在6大洲70多个国家,包括孟加拉国、印度、中国、越南、尼泊尔、墨西哥、匈牙利、阿根廷等[4]。部分地区地下水中砷的浓度可以达到数百甚至数千微克每升,远远高于世界卫生组织所推荐的饮用水中10 μg·L−1限值[5]。长期摄入砷可能引发皮肤病、心血管疾病以及其他各种癌症[6]。地下水砷污染是一个严重的环境问题,因此地下水砷污染的治理也一直是研究热点。

    吸附法以其高效、灵活、成本低、操作简便等优点被广泛应用于水体中砷的去除[7]。有研究表明,铁氧化物对As(Ⅴ)有较好的吸附作用,但地下水中的砷通常以As(Ⅲ)形态存在,ZHANG等[8]制备了一种铁锰二元氧化物吸附剂,利用锰氧化物氧化和氧化铁吸附作用机制实现了地下水中As(Ⅲ)的高效去除。近年来,纳米零价铁(nano zero-valent iron,nZVI)因其体积小、比表面积大、还原性强、吸附性能好、环境友好等特点,被广泛应用于水体中重金属和有机物污染物的控制[9-10]。此外,有研究[11]表明,nZVI材料在地下水砷污染控制中具有明显优势。

    目前,关于nZVI除砷的研究主要是在实验室模拟地下水的严格厌氧环境中,或直接暴露在大气环境下进行的[12-13]。溶解氧的存在明显影响了nZVI在水溶液中的反应行为及对砷的去除作用[14]。但不同氧含量对nZVI除砷效果影响的研究尚未见报道。在自然的地下环境中,随着土壤向沉积物的转变,氧浓度呈现由高向低逐渐变化的趋势[15]。此外,由于地下水过度开采以及季节性变化等也会造成地下水位波动,导致地下水处于厌氧、好氧交替的环境之中[16-18],进而对nZVI除砷效果产生未知的影响。因此,研究不同氧含量条件下nZVI去除As(Ⅲ)和As(Ⅴ)的作用机制,通过人为调控氧含量强化nZVI除砷效果具有重要的环境意义。

    本研究通过分析不同氧含量(厌氧、低氧、中氧和高氧)条件下nZVI分别去除As(Ⅲ)和As(Ⅴ)的作用机制,以探索氧含量对nZVI除砷效果的影响。并利用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等对nZVI-H2O-O2-As(Ⅴ)/As(Ⅲ)反应产物进行了表征,进而明确氧气促进nZVI除As(Ⅴ)/As(Ⅲ)的作用机理。

    硫酸亚铁(FeSO4•7H2O)、硼氢化钠(NaBH4)、亚砷酸钠(NaAsO2)和砷酸钠(Na2HAsO4•7H2O)购自上海阿拉丁生化科技股份有限公司。氢氧化钠(NaOH)、氯化钠(NaCl)、盐酸(HCl)、无水乙醇(C2H6O)购于中国国药集团化学试剂有限公司。药品均为分析级或优级纯。NaAsO2和Na2HAsO4•7H2O分别用于制备10 g·L−1 As(Ⅲ)和As(Ⅴ)的储备溶液。实验用水均为超纯水(18.2 MΩ•cm)。

    根据SUN的方法[19],用硼氢化钠还原亚铁盐制得nZVI。将100 mL NaBH4溶液(0.2 mol·L−1)以每秒1~2滴的速度滴加到100 mL (V:V乙醇=4:1) FeSO4•7H2O(0.05 mol·L−1)溶液中,滴定过程中持续机械搅拌,滴完后继续反应20 min,整个过程处于氮气保护气氛中。然后将生成的黑色nZVI分别用脱氧水和脱氧乙醇各清洗3次以去除杂质。最后将nZVI保存在乙醇溶液中备用。

    实验以0.01 mol·L−1NaCl为背景电解质,反应溶液体系为30 mL,nZVI投加量为200 mg·L−1,初始砷浓度为50 mg·L−1,反应在铝箔包覆的50 mL密封西林瓶中进行,置于转速为150 r·min−1的摇床上振荡。含砷溶液曝氮气(99.99%)以排除氧气,加入nZVI前用NaOH和HCl溶液调节体系pH至7.2。不同的氧气含量通过加入不同体积的氧气(99.99%)来实现。其中,氧含量为顶空与溶液两部分的氧气总和,低氧浓度定义为O2/nZVI的摩尔比为0.05、0.125、0.25和0.5,中氧浓度定义为O2/nZVI的摩尔比为1.0和2.0,高氧浓度定义为O2/nZVI的摩尔比为3.0、4.0和5.0。在温度为25 ℃,大气压为101.3 kPa的条件下,氧气在水中的亨利系数为1.28×10−8 mol·(L·Pa)−1,根据亨利定律和克拉佩龙方程,并对水蒸气的分压进行校正(水的蒸气压为0.031 67×105 Pa),经计算,低氧对应的溶解氧为0.21、0.51、1.03和2.05 mg·L−1,中氧对应的溶解氧为4.10 mg·L−1和8.20 mg·L−1,高氧对应的溶解氧为12.30、16.40和20.50 mg·L−1。所有实验均在室温(25 ℃)下重复进行。

    反应过程中每隔一定时间进行取样,经0.22 μm的滤膜过滤后采用高效液相色谱(HPLC,LC-20A,岛津,日本)串联原子荧光光谱(AFS,AFS-2202E,海光,中国)测定溶液中砷的浓度。反应结束后,通过离心和真空冷冻干燥得到固体样品。采用扫描电镜(SEM,Gemini 300,蔡司,德国)对产物形貌进行扫描。固体的成分是由X射线衍射(XRD,X/Pert PRO MPD,帕纳科,荷兰)分析。反应固体中砷和铁的氧化价态用X射线光电子能谱(XPS,ESCALAB 250 xi,赛默飞世尔,美国)分析,结合能值均以C1s 284.8 eV作为参照。

    不同氧含量条件下As(Ⅲ)/As(Ⅴ)浓度随时间的变化见图1

    图 1  不同氧含量条件下As(III)/As(V)浓度随时间的变化
    Figure 1.  Changes of As(III)/As(V) concentration with time under different oxygen content conditions

    1)氧气含量对nZVI除As(Ⅲ)效果的影响。nZVI去除As(Ⅲ)过程中As(Ⅲ)的浓度随时间变化结果如图1(a)图1(c)图1(e)所示,不同氧含量条件下,As(Ⅲ)浓度均随时间延长迅速降低,并逐渐趋于稳定达到反应平衡。厌氧条件下As(Ⅲ)去除率为61.23%;低氧条件下随着氧含量的增加As(Ⅲ)去除率有所升高,在O2/nZVI摩尔比为0.5时,As(Ⅲ)的去除率达到最大,较厌氧条件增加了35.04%。在中氧和高氧(O2/nZVI摩尔比>0.5)条件下,伴随着As(Ⅲ)氧化作用,溶液中可检测到少量As(Ⅴ)(0.26~4.38 mg·L−1)导致As(Ⅲ)去除率与总砷去除率存在差异。中氧条件下反应30 min达到平衡但As(Ⅲ)去除率低,在O2/nZVI摩尔比为2.0时,As(Ⅲ)和总砷的去除率分别为80.13%和74.17%,总砷去除率较厌氧条件只升高了12.94%;高氧条件下总砷的去除率有所升高且稳定在90%左右。

    2)氧气含量对nZVI除As(Ⅴ)效果的影响。在nZVI去除As(Ⅴ)的过程中,溶液中未检测到As(Ⅲ),故As(Ⅴ)的去除率即总砷的去除率。不同氧含量条件下溶液中As(Ⅴ)的浓度随时间变化结果如图1(b)图1(d)图1(f)所示。厌氧条件下砷的去除率为24.61%;在低氧条件下As(Ⅴ)去除率随着氧含量的增加而升高,在O2/nZVI摩尔比为0.5时As(Ⅴ)去除率达到最大,为51.75%,较厌氧条件增加了27.14%;在中氧条件下砷的去除率下降,在O2/nZVI摩尔比为1.0时去除率为33.03%,较厌氧条件只增加了8.42%;在高氧条件下砷的去除率增大且稳定在48%左右。

    对比反应达到平衡后nZVI对As(Ⅲ)和As(Ⅴ)去除(图2)结果表明,不同氧气含量对nZVI除砷的促进程度不同,且整体去除率随着氧含量的增加呈现先升高再下降又升高的趋势;nZVI对As(Ⅲ)的去除率大于As(Ⅴ),说明在As(Ⅲ)为主要污染物的地下水中,采用nZVI除砷具有明显优势;此外,不管是对As(Ⅲ)还是As(Ⅴ),有氧条件下砷的去除效果均好于厌氧条件,说明氧气的存在明显促进了砷的去除。

    图 2  不同氧含量条件对砷的去除率的影响
    Figure 2.  Effect of different oxygen content conditions on arsenic removal efficiency

    图3是反应达到平衡后不同氧含量条件对溶解态铁释放的影响。如图3(a)所示,As(Ⅲ)体系中,随着O2/nZVI摩尔比增加溶解态铁浓度呈现先上升后降低的趋势,在O2/nZVI摩尔比为0~0.5时主要溶出Fe(Ⅱ),且浓度较低(0.86~2.99 mg·L−1);在O2/nZVI摩尔比为1.0时总铁浓度达到最高(15.89 mg·L−1),且以Fe(Ⅲ)为主。从图3(b)可以看出,As(Ⅴ)体系与As(Ⅲ)体系的溶解态铁整体变化趋势一致,在O2/nZVI摩尔比为1.0时总铁浓度达到最高(9.87 mg·L−1)。化学反应式(1)~式(5)解释了溶解态铁浓度变化的原因[20-22]:在无氧条件下nZVI发生自发腐蚀反应(式(1));低氧条件下发生氧腐蚀溶出少量Fe(Ⅱ)(式(2)),且伴随反应式(3)和式(4)的发生,最终仍产生Fe(Ⅱ);中氧和高氧条件下溶解态铁浓度进一步增加,随着反应(式(4))的进行最终产生Fe(Ⅲ)为主的溶解态铁。其中在中氧条件下过多铁离子溶出,溶解态铁对砷无去除效果从而使除砷效果降低。但在高氧条件下溶出的铁离子浓度远低于中氧条件,推测在过量氧气的作用下铁离子进一步转化为(羟基)氧化铁,增强砷的去除效果[13, 23]

    图 3  不同氧含量条件对溶解态铁释放的影响
    Figure 3.  Effect of different oxygen content conditions on the release of dissolved iron
    Fe0+2H2OFe2++H2+2OH (1)
    2Fe0+2H2O+O22Fe2++4OH (2)
    2Fe0+Fe3+3Fe2+ (3)
    4Fe2+(s)+2H2O+O24Fe3++4OH (4)

    图4是不同氧含量条件下nZVI除砷时溶液pH的变化趋势。在整个氧含量范围内,As(Ⅲ)体系溶液pH在7.0~8.5,As(Ⅴ)体系溶液pH>9.0。砷的存在形态与pH有关,对于As(Ⅲ),H2AsO3(pKa1=9.22)、HAsO23(pKa2=12.10)、AsO33(pKa3=13.40)为溶液酸性到碱性的优势形态,pH在7.0~8.5时主要以H3AsO03形态存在;对于As(Ⅴ),H2AsO4(pKa1=2.22)、HAsO24(pKa2=6.96)、AsO34(pKa3=11.50)为溶液酸性到碱性的优势形态,pH>9.0主要以HAsO24形态存在[24]。nZVI等电点一般为8.0左右,当pH>9.0时nZVI荷负电[25]HAsO24与nZVI存在较强的静电排斥作用使As(Ⅴ)难以吸附在nZVI氧化壳表面,而H3AsO03与nZVI不受静电排斥作用的影响,因此,nZVI对As(Ⅲ)的去除效果好于As(Ⅴ)。

    图 4  不同氧含量条件对pH的影响
    Figure 4.  Effect of different oxygen content conditions on pH

    1) SEM与XRD表征结果。图5是新制备nZVI及不同氧含量条件下nZVI-H2O、nZVI-H2O-As(Ⅲ)和nZVI-H2O-As(Ⅴ)体系反应产物的SEM图。为进一步分析不同氧含量下各个体系所生成的产物类型,对其进行了XRD表征分析(图6)。结合SEM与XRD表征可知,新制备的nZVI颗粒呈球形,粒径在50~100 nm,整体呈链条状,存在团聚现象(图5(a)),在衍射角2θ为44.67°处有较宽的衍射峰,对应体心立方结构α-Fe的(110)晶面,这说明制备的是结晶性较差的零价铁(图6(a))。厌氧条件下各体系铁核发生不同程度的溶解,反应后的产物仍然以零价铁为主。对于nZVI-H2O体系随着氧含量的增加产物形貌由扁片状向粗糙粒状、片状及针状结构转化(图5(b))。在低氧和中氧条件下生成的主要产物为磁铁矿/磁赤铁矿[21, 26](式(5)~式(9)),在高氧条件下生成磁铁矿/磁赤铁矿、纤铁矿、针铁矿等多相混合物[27-28],反应见式(10)~式(12),结果见图6(a)

    图 5  新制备nZVI及不同氧含量条件下反应产物的SEM图
    Figure 5.  SEM images of original nZVI and reaction products under different oxygen content conditions
    图 6  反应产物的XRD图谱
    Figure 6.  XRD patterns of reaction products

    nZVI-H2O-As(Ⅲ)/As(Ⅴ)体系在有氧条件下的产物形貌和结构与nZVI-H2O体系存在明显差异。其中在低氧条件下均呈片状褶皱结构,在中氧和高氧条件下产物形貌为均为粗糙片状和颗粒絮状(图5(c)图5(d)),形貌的变化与生成沉淀或新的物相有关,但XRD结果表明无明显晶型(羟基)氧化铁的峰(图6(b)图6(c))。这是由于As(Ⅲ)/As(Ⅴ)与Fe(O, OH)6之间存在很强的亲和力,在(羟基)氧化铁生成过程中,砷会破坏Fe-O-Fe键从而抑制铁矿物例如针铁矿、纤铁矿和磁铁矿晶体的形成[29-30]。同时As(Ⅴ)/As(Ⅲ)可加速Fe(Ⅲ)水解形成无定型铁矿物如水铁矿,并干扰无定型铁矿物向其他晶态铁矿物转变过程中的晶体成核和生长[31]。有氧条件下氧气可促进nZVI氧化为Fe(Ⅱ)和Fe(Ⅲ)(式(2)和式(4))并进一步在氧化或水解作用下形成无定型(羟基)氧化铁从而促进砷的去除[23]。其中低氧条件下产物仍存在明显α-Fe衍射峰,且除砷效果比厌氧条件好,这说明nZVI经少量氧化生成的无定型铁矿物可促进砷的去除;而在中氧条件下α-Fe衍射峰变弱,且砷去除率降低,结合图3可知,由于溶液中大量铁离子溶出,且溶解态的铁对砷无去除效果所致;在高氧条件下α-Fe衍射峰消失,溶液中铁离子浓度减少,这说明溶出铁离子与氧气反应生成较多无定型铁矿物,再次增强了砷的去除率(图6(b)图6(c))。

    2Fe(OH)3Fe2O3+3H2O (5)
    6Fe2++6H2O+O22Fe3O4+12H+ (6)
    6Fe(OH)2+O22Fe3O4+6H2O (7)
    6FeO+O22Fe3O4 (8)
    4Fe3O4+O26Fe2O3 (9)
    Fe(OH)3FeOOH+H2O (10)
    4Fe0+2H2O+3O24γFeOOH (11)
    4Fe3O4+6H2O+O212γFeOOH (12)

    2) XPS表征结果。采用XPS手段进一步分析氧气对nZVI除砷的影响机制,利用分峰软件avantage5.52对表征结果进行分析(表1)。在nZVI-H2O-As(Ⅲ)/As(Ⅴ)体系中,反应产物仍然分别以As(Ⅲ)和As(Ⅴ)为主。随着氧含量的增大,固体表面As(Ⅲ)比例逐渐减小,As(Ⅴ)比例逐渐增大,As(0)比例逐渐减小,说明nZVI除砷的机理除吸附外,还同时存在砷的氧化和还原作用,且随着氧含量增加抑制了砷的还原,促进了砷的氧化。此外,随着氧含量的增加,固体表面Fe(Ⅱ)比例逐渐减小,Fe(Ⅲ)比例逐渐增大,Fe(0)比例逐渐减小,证实了氧气的存在促进了nZVI的氧化,并形成新的铁矿物,进而影响对砷的吸附行为。

    表 1  不同氧含量条件下,nZVI-H2O-As(III)/As(V)体系反应产物中不同价态的砷和铁占比
    Table 1.  Proportion of arsenic and iron with different valence states in reaction products of nZVI-H2O-As(III)/As(V) systemsunder different oxygen content conditions %
    体系氧含量条件As(V)As(III)As(0)Fe(III)Fe(II)Fe(0)
    nZVI-H2O-As(III)厌氧13.2280.316.4735.5954.849.57
    低氧16.3578.804.8539.1353.317.56
    中氧37.5558.654.0058.0339.472.50
    高氧39.5057.792.7159.2838.562.16
    nZVI-H2O-As(V)厌氧65.3316.5918.0817.4169.1613.42
    低氧74.2213.8411.9433.8556.219.94
    中氧92.177.830.0055.7542.042.21
    高氧92.687.320.0057.0440.962.01
     | Show Table
    DownLoad: CSV

    在厌氧和低氧条件下,nZVI-H2O-As(Ⅴ)/As(Ⅲ)体系中产生浓度较低的溶解态Fe(Ⅱ),XRD表征结果表明,反应产物只有α-Fe的衍射峰,说明固体中主要成分仍然以nZVI为主且溶解至游离态程度较低。XPS表征结果表明,固体表面砷的形态以As(Ⅴ)、As(Ⅲ)和As(0)这3种形式存在,这说明nZVI仍然保持着核壳结构所具有的特殊作用。铁核具有还原能力,nZVI氧化还原电位为−0.447 V(Fe(0)/Fe(Ⅱ)),As(Ⅴ)反应至As(0)所需电位为0.449 V,nZVI将As(Ⅴ)还原至As(0)在热力学上是可行的[32-33]。As(Ⅲ)和As(Ⅴ)反应体系产物固体表面分别以As(Ⅲ)和As(Ⅴ)为主,这说明nZVI除砷主要是以吸附作用为主,砷与铁氧化物表面吸附位点上的OH2/OH进行配体交换,通常在表面形成以双齿双核为主的内球络合物[34-35]。XRD与XPS表征结果表明,在厌氧和低氧条件下的反应产物并无较大的差异,固体表面Fe(0)含量略微下降,Fe(Ⅲ)含量略微增加。但低氧条件下nZVI除砷速度(图1(a)图1(b))明显比厌氧条件下快,且砷的去除率(图2)也明显比厌氧条件下高,这与nZVI少量氧化有关。综合SEM与XPS结果说明在低氧条件下,nZVI的少量氧化造成其微观形貌的改变,所形成的少量无定型(羟基)氧化铁提升了对砷的吸附作用,使砷的去除率增加。

    在中氧和高氧条件下,XPS结果显示固体表面砷和铁各价态含量所占比例大致相当(表1)。nZVI-H2O-As(Ⅲ)体系主要以As(Ⅲ)和As(Ⅴ)为主,nZVI-H2O-As(Ⅴ)体系主要以As(Ⅴ)为主,且无As(0),说明在有氧条件下nZVI除砷主要是以吸附和氧化为主。固体表面Fe(Ⅲ)明显增加,且XRD结果显示α-Fe的衍射峰变弱或消失且没有明显衍射峰,说明nZVI被大量氧化,氧气氧化nZVI为溶解态Fe(Ⅱ)/Fe(Ⅲ),铁离子在氧气的作用下进一步被氧化形成无定型或弱晶型铁矿物,这些铁矿物可起到除砷的作用,此外As(Ⅲ)/As(Ⅴ)也可在新的铁矿物形成的过程中被掺杂固定下来[36]。其中在中氧条件下,氧气促进nZVI氧化为大量溶解态Fe(Ⅱ)/Fe(Ⅲ)(图3),溶解态铁对砷无去除效果,从而降低砷的去除效果;而在高氧条件下溶解态铁Fe(Ⅱ)/Fe(Ⅲ)在足量氧气的作用下进一步被氧化为铁矿物,增强了对砷的去除效果。

    高氧条件生成更多铁矿物促进砷的去除,但该条件下nZVI对砷的去除率比低氧条件的最大去除率低,原因可能为低氧条件下nZVI氧化在其表面生成无定型水铁矿,无定型水铁矿均匀分布在nZVI表面,比表面积较大,因此对砷具有较强的吸附能力。而高氧条件下nZVI大量氧化生成了结构更有序的铁矿物,研究表明,随着非晶铁矿物向晶态铁矿物的转变,产物比表面积和吸附位点密度降低,从而降低了其对砷的吸附量[37-38]

    1)氧气的存在会显著促进nZVI对砷的去除效果,但不同氧气含量对nZVI除As(Ⅲ)/As(Ⅴ)的促进程度有所不同。整体趋势表现为,在低氧条件下随着氧气含量的增加As(Ⅲ)/As(Ⅴ)的去除率增大,中氧条件下As(Ⅲ)/As(Ⅴ)的去除率降低,高氧条件下As(Ⅲ)/As(Ⅴ)的去除率再次升高。若将nZVI技术应用于地下水砷的去除时,如果地下水中溶解氧含量极低,为提升砷的去除效果可以向地下水中适量曝气。

    2)nZVI除砷的作用机制包括砷的吸附、还原和氧化等,不同氧气含量对nZVI的氧化程度及除砷效果具有较大的影响。在低氧条件下nZVI少量氧化生成的无定型铁矿物促进了砷的去除;中氧条件下nZVI氧化生成较多的溶解态铁,溶解态铁对砷无去除效果,从而造成砷的去除率的下降;高氧条件下溶解态铁被足量氧气进一步氧化为无定型铁矿物,增强了对砷的去除效果。

    3)传统铁氧化物对As(Ⅴ)具有良好的去除效果,去除As(Ⅲ)时需先将其氧化为As(Ⅴ)再进行吸附处理。在相同的实验条件下,nZVI对As(Ⅲ)的去除效果好于As(Ⅴ),可实现As(Ⅲ)的直接高效去除,因此,将nZVI作为修复剂应用于主要以As(Ⅲ)污染为主的地下水修复中更具优势。

  • 图 1  小试装置立体示意图

    Figure 1.  Stereoscopic diagram of test device

    图 2  反应器启动阶段的COD去除情况

    Figure 2.  COD removal during the start-up phase of the reactor

    图 3  反应器启动阶段的NH+4-N去除情况

    Figure 3.  NH+4-N removal during the start-up phase of the reactor

    图 4  稳定运行阶段反应器的COD去除效果

    Figure 4.  COD removal effect of reactor at the stable operation stage

    图 5  稳定运行阶段反应器的NH+4-N去除效果

    Figure 5.  NH+4-N removal effect of reactor at the stable operation stage

    图 6  稳定运行阶段反应器的TP去除效果

    Figure 6.  TP removal effect of reactor at the stable operation stage

    图 7  稳定运行阶段反应器的SS去除效果

    Figure 7.  SS removal effect of the reactor at the stable operation stage

  • [1] 彭利英. 砌体圆拱式化粪池的受力性能分析及研究[D]. 长沙: 湖南大学, 2006.
    [2] 郝晓地, 赵靖, 李俊奇. 集中式污水处理厂取代化粪池可行性分析[J]. 水资源保护, 2006, 22(4): 85-87. doi: 10.3969/j.issn.1004-6933.2006.04.025
    [3] 闫亚男, 张列宇, 席北斗, 等. 改良化粪池/地下土壤渗滤系统处理农村生活污水[J]. 中国给水排水, 2011, 27(10): 69-72.
    [4] 于婷, 于法稳. 农村生活污水治理相关研究进展[J]. 生态经济, 2019, 35(7): 209-213.
    [5] 王玉华, 方颖, 焦隽. 江苏农村“三格式”化粪池污水处理效果评价[J]. 生态与农村环境学报, 2008, 24(2): 80-83. doi: 10.3969/j.issn.1673-4831.2008.02.018
    [6] 郭运功, 林逢春, 吕永鹏, 等. 上海市新农村生活污水处理现状分析及对策[J]. 中国给水排水, 2008, 24(10): 7-10. doi: 10.3321/j.issn:1000-4602.2008.10.002
    [7] 林克明. 化粪池出水的土地渗滤处理技术研究[D]. 上海: 上海交通大学, 2009.
    [8] 韦昆, 傅大放, 王亚军. 新型化粪池处理分散农户生活污水的试验研究[J]. 中国给水排水, 2017, 33(19): 59-62.
    [9] NASR F A, MIKHAEIL B. Treatment of domestic wastewater using conventional and baffled septic tanks[J]. Environmental Technology Letters, 2013, 34(16): 2337-2343. doi: 10.1080/09593330.2013.767285
    [10] 付婉霞, 秦晓晶, 汪燕. 改进型山区村庄三格化粪池污水处理效果的试验研究[J]. 给水排水, 2009, 35(S2): 283-285.
    [11] 胡娜, 赵丽敏, 栗朋朋, 等. 曝气浸没固定生物膜反应器处理化粪池出水[J]. 环境工程学报, 2012, 6(6): 1957-1960.
    [12] 阳琪琪. A/O生物接触氧化工艺处理城市污水试验研究[D]. 重庆: 重庆大学, 2013.
    [13] 单琦, 车鸣. 浅谈生物接触氧化工艺[J]. 中国新技术新产品, 2011, 18(3): 5. doi: 10.3969/j.issn.1673-9957.2011.03.004
    [14] 方大伟. 水解酸化-生物接触氧化处理印染废水的试验研究[D]. 西安: 长安大学, 2008.
    [15] JIANG R, HUANG S B, YANG J. Biological removal of NOx from simulated flue gas in aerobic biofilter[J]. Global Nest Journal, 2008, 10(2): 241-248.
    [16] KHOSHFETRAT A B, NIKAKHTARI H, SADEGHIFAR M, et al. Influence of organic loading and aeration rates on performance of a lab-scale upflow aerated submerged fixed-film bioreactor[J]. Process Safety and Environmental Protection, 2011, 89(3): 193-197. doi: 10.1016/j.psep.2011.02.002
    [17] 王亮. “生物滤池+生物接触氧化池”组合工艺处理小城镇生活污水的试验研究[D]. 重庆: 重庆大学, 2015.
    [18] 关华滨. 新型化粪池处理生活污水的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
  • 加载中
图( 7)
计量
  • 文章访问数:  7489
  • HTML全文浏览数:  7489
  • PDF下载数:  114
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2020-03-01
  • 刊出日期:  2020-10-10
王立东, 刘德明, 马世斌, 傅振东, 李伊然, 薛藏藏. 改进型农村三格化粪池的污水处理性能[J]. 环境工程学报, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025
引用本文: 王立东, 刘德明, 马世斌, 傅振东, 李伊然, 薛藏藏. 改进型农村三格化粪池的污水处理性能[J]. 环境工程学报, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025
WANG Lidong, LIU Deming, MA Shibin, FU Zhendong, LI Yiran, XUE Zangzang. Sewage treatment performance of modified rural three-chamber septic tank[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025
Citation: WANG Lidong, LIU Deming, MA Shibin, FU Zhendong, LI Yiran, XUE Zangzang. Sewage treatment performance of modified rural three-chamber septic tank[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2831-2836. doi: 10.12030/j.cjee.201911025

改进型农村三格化粪池的污水处理性能

    通讯作者: 刘德明(1963—),男,学士,教授。研究方向:建筑给排水等。E-mail:fd-ldm@163.com
    作者简介: 王立东(1995—),男,硕士研究生。研究方向:水处理技术等。E-mail:hldove@126.com
  • 1. 福州大学土木工程学院,福州 350108
  • 2. 福建省融旗建设工程有限公司,福州 350301
基金项目:
福州大学与福建省融旗建设工程有限公司“农村化粪池改进技术研究”合作项目(00501765)

摘要: 在我国农村地区,化粪池仍然是许多家庭生活污水直排前的唯一处理设施。传统三格化粪池出水水质较差,造成了农村水环境污染,而对传统三格化粪池进行适当改进是解决污染问题的有效途径之一。为此,对传统三格化粪池进行了结构和功能的优化设计,在第1格设置由过流板隔开的预处理曝气池和预处理沉淀池,第2格保留厌氧发酵池,第3格由过流板分隔为生物接触氧化池和二次沉淀池。结果表明,稳定运行后,反应器对COD、NH+4-N、TP和SS的去除率分别为83.51%~88.56%、66.82%~74.17%、77.47%~81.12%和82.26%~88.57%,相较于传统三格化粪池有显著的提升。改进型农村三格化粪池实现了农村分散式污水的就地处理,且经济性和维护便利性符合农村污水处理设施的定位需求,可为农村三格化粪池的改造和新建提供参考。

English Abstract

  • 化粪池是一种常见的建筑物附属污水处理设施,利用沉淀和厌氧发酵作用,对生活污水进行过渡性处理[1-2]。在我国农村地区,农户住宅较为分散,管网的覆盖率低,集中式污水处理方法不能有效地推广运用[3]。住建部2016年城乡建设统计公报显示,截至2016年末,我国仅有20%的行政村对生活污水进行了处理[4],这使得化粪池成为很多农户生活污水直排前的唯一处理设施[5]。然而,现有的传统三格化粪池对生活污水的处理效果较差,导致化粪池出水污染物浓度超标,排入水体后恶化了农村水环境,甚至引发水体黑臭现象[6-7]。因此,对传统三格化粪池进行结构和功能的优化设计,提高其出水水质,实现生活污水的就地处理具有现实意义[8]

    目前,对化粪池的改进研究主要集中在3个方面:1)改变化粪池内水流形态以增强处理效果,如NASR等[9]对带挡板化粪池的污水处理性能进行研究;2)添加填料以增强对污水的处理效果,如付婉霞等[10]对比了填料厚度对化粪池处理效果的影响;3)在化粪池后增加处理工艺,以进一步处理化粪池出水,如胡娜等[11]对生物接触氧化装置处理化粪池出水的性能进行了研究。生物接触氧化法作为一种高效的生物处理技术,兼具了生物膜法和活性污泥法的优点[12],如抗冲击负荷能力强、比表面积大、污泥产量小、动力消耗低和易于运行管理等[13-16]。这些工艺特点使其可以应用于化粪池中,在经济且便于管理的前提下,提高农村三格化粪池对生活污水的处理效果。

    本研究在传统三格化粪池中集成了包括曝气、厌氧、生物接触氧化的好氧-厌氧-好氧(oxic-anaerobic-oxic,OAO)多级串联工艺,对三格化粪池的结构和功能进行优化设计,并通过模型实验对改进型三格化粪池长期稳定运行效果进行探究,为农村三格化粪池的改造和新建提供参考。

  • 小试装置由厚度8 mm的亚克力板依据传统三格化粪池等比例缩小制成,小试装置立体示意图如图1所示。反应器整体尺寸为1 000 mm × 500 mm × 600 mm(长×宽×高),有效水平面高度为450 mm,有效容积为225 L。反应器分成体积比为2∶1∶3的3个格室,第1格和第3格分别由2块低于有效水平面100 mm的过流挡板分隔成3∶2的2个区域。反应器第1格分隔为预处理曝气池和预处理沉淀池2个区域,第2格为厌氧发酵池,第3格分隔为生物接触氧化池和二次沉淀池2个区域。生活污水自反应器左侧的进水管进入预处理曝气池,在曝气作用下,污水与空气及底泥充分接触,随后水流向上通过挡板进入预处理沉淀池,静置沉降泥水分离;而后污水从过流管溢流至反应器第2格的厌氧发酵池,厌氧降解杀菌杀卵;接着污水从过流管进入反应器第3格的生物接触氧化池,在池内与立体弹性填料上的生物膜充分接触,继而水流向上通过挡板进入二次沉淀池,老化脱落的生物膜静置沉淀;最后,处理完成的污水沿着出水管排出反应器。

    反应器的通气系统由通气连接管、单向阀和通气管组成。通气连接管连通反应器的第1格和第3格,并在反应器第2格内设有单向阀。当厌氧发酵池内产生气体造成压强增大,气体可通过单向阀进入通气连接管,而连接管内的气体无法进入厌氧发酵池内,从而在排出厌氧发酵所产生气体的同时,保证了厌氧发酵池内的厌氧环境。在通气连接管和单向阀的共同作用下,反应器第3格和第2格的气体均导入第1格,再由第1格的通气管向上统一排出反应器,从而维持了反应器内的气压稳定。

  • 实验用水为人工配水,以福清第二污水处理厂细格栅后的污水为原水,参照农村生活污水水质进行加药配制,具体的配制方案为C6H12O6 266 mg·L−1、NH4Cl 160 mg·L−1和K2HPO4 17 mg·L−1。配水后的水质指标如下:COD为263~422 mg·L−1NH+4-N为21.0~30.2 mg·L−1、TP为4.16~5.12 mg·L−1、SS为102~124 mg·L−1

  • 主要分析指标为COD、NH+4-N、TP和SS,分别采用快速消解分光光度法、水杨酸分光光度法、钼酸铵分光光度法以及重量法对4项指标进行测定。

  • 为加快反应器的启动速度,采用接种挂膜的方式,对生物接触氧化池中的填料进行挂膜启动。接种污泥取自福清第二污水处理厂的曝气池。采用间歇闷曝的方式对生物接触氧化池进行前期挂膜[17],闷曝10 d后,反应器正常进水,观测进出水的COD和NH+4-N数据,以判断启动进度。实验期间控制DO在2~4 mg·L−1,温度为室温,反应器启动阶段进出水COD和NH+4-N浓度及去除情况如图2图3所示。可以看出,在启动阶段前期,由于生物接触氧化池中的活性污泥微生物还未适应进水的水质条件,且填料上的生物膜未完全形成,故反应器对COD和NH+4-N的去除率较为不稳定;随着实验的推进,立体弹性填料上的生物膜逐渐形成,反应器对COD和NH+4-N的去除效果逐渐增强,COD和NH+4-N平均去除率分别稳定在83%和70%附近。此时,可以看到立体弹性填料表面形成了一层黄褐色生物膜,取样做微生物镜检,可以观察到大量的钟虫、轮虫和鞭毛虫等原生动物,并且还有大量以菌胶团形式存在的细菌。微生物数量较多且活性较强,这说明生物接触氧化池中的生物膜逐渐成熟,同时系统的有机物和氨氮去除率趋于稳定,这些均反映了生物接触氧化池的启动完成。

  • 在反应器的启动阶段过后,对反应器进行了一个长期稳定运行的监测,以检验改进型三格化粪池对生活污水的处理效果。稳定运行阶段,反应器水力停留时间为24 h,第1格和第3格均依据气水比10∶1进行曝气充氧,曝气量均为2 250 L·d−1,使好氧池溶解氧维持在2~4 mg·L−1,厌氧池中溶解氧≤0.2 mg·L−1,实验温度为实验室室温。反应器稳定运行阶段的进出水各项指标的监测结果如图4~图7所示。

    图4可知,在历时30 d的稳定运行阶段,进水COD为271~418 mg·L−1。稳定运行阶段初期,有机物处理效果有小幅度波动,而后COD去除率逐渐稳定在87%附近,相较传统三格化粪池30%~50%的去除率[18]有了稳定的提升。进水流经预处理曝气池,经过曝气处理后,部分有机物被用于微生物自身合成,另有部分易降解有机物被微生物降解为二氧化碳和水。预处理曝气过的污水经预处理沉淀池稳定后,经过粪管进入厌氧发酵池,在厌氧环境下,有机物历经了水解阶段、产酸发酵阶段、产氢产乙酸阶段和产甲烷阶段等分解代谢过程,最终被分解为CH4、CO2和H2O,一些预处理曝气阶段难降解的有机物,在厌氧池中得到降解。厌氧发酵后的污水进入生物接触氧化池,与填料上的生物膜进行了充分的接触,在微生物的新陈代谢功能作用下,有机物得到有效去除。在预处理曝气、厌氧降解及生物接触氧化工艺的共同作用下,有机物在反应器中得到有效去除。

    图5可知,在稳定运行阶段,进水中的NH+4-N浓度为21.1~30.2 mg·L−1,经过反应器的OAO多级串联工艺处理,进水中的NH+4-N得到稳定有效的去除,去除率稳定在70.50%。相较于传统三格化粪池,改进型三格化粪池的脱氮效果得到显著的提升。进水流经预处理曝气池,经曝气处理后,氨氮在好氧环境下经硝化作用转化为硝态氮。经预处理曝气和沉淀的污水进入厌氧发酵池,在厌氧环境下,一些难降解的有机物得到降解,作为反硝化反应的碳源,使硝态氮经反硝化作用转化为N2。而后污水进入生物接触氧化池,与填料上的生物膜进行了充分的接触,在微生物的新陈代谢功能作用下,氨氮得到有效去除。但受制于成本及保障厌氧发酵池厌氧环境的考虑,改进型三格化粪池没有设置内回流,生物接触氧化池中的硝态氮没有回流至厌氧池进行反硝化脱氮,致使出水的NH+4-N浓度较低而TN浓度不能稳定达标,有待进一步完善。

    图6可知,在稳定运行阶段,反应器的除磷效果较好。进水的TP浓度为4.16~5.12 mg·L−1,经过反应器的OAO多级串联工艺处理,进水中的TP得到稳定有效的去除,去除率稳定在79.15%。由于TP的生物去除本质是通过排泥实现的,随着运行时间的延长,反应器对于TP的去除效果会逐渐下降,故每3个月需对反应器进行清掏排泥,使反应器维持较好的除磷效果。

    图7可知,反应器进水的SS浓度为102~124 mg·L−1,进水中的悬浮物经过预处理曝气池的曝气降解、预处理沉淀池的自然沉降、厌氧发酵池的厌氧降解、生物接触氧化池的吸附截留和二次沉淀池的静置沉淀,浓度得到有效的降低。整个稳定运行阶段,反应器出水的SS浓度为12~22 mg·L−1,平均去除率为85.95%,这表明反应器在稳定运行后对进水中的悬浮物具有较好的去除效果。

  • 在建设成本方面,改进型三格化粪池在传统化粪池的基础上仅需额外购置空气压缩机、穿孔曝气管及填料等,所需成本较低且易于建造。在运行电耗方面,以有效容积为1.8 m3的改进型三格化粪池为例,选用功率为980 W,排气量为90 L·min−1的空气压缩机进行空气输入,在气水比为10∶1,水力停留时间为24 h的情况下,空气压缩机每天的耗电量为6.53 kWh,利用时控开关控制设备以夜间用电低谷时段为主进行曝气,福州地区低谷时段电费约为每度0.3元,设备处理污水所耗电费为1.08元·t−1,接近于福州地区0.95元·t−1的居民生活用污水处理费,故设备整体运行费用较低。

  • 1)为小试实验设计的改进型三格化粪池设置了OAO多级串联工艺,在接种挂膜完成后,对进水的COD、NH+4-N、TP和SS有着稳定高效的处理效果,且在控制的进水浓度范围内,反应器有着良好的抗冲击负荷能力,从而保障了系统的稳定运行。

    2)空气压缩机在运行阶段,依靠时控开关实现自动运行,设置好参数后便可稳定运转,降低了运行管理的难度;改进型三格化粪池通气状况良好,避免了传统化粪池因沼气沉积而遇火源爆炸的安全隐患;生物接触氧化池污泥产量小,立体弹性填料不易堵塞且耐腐蚀老化,满足了农村化粪池长期稳定运行的要求。

    3)相较于传统的管网收集后对污水进行集中处理的方法,改进型三格化粪池省去了管网的铺设费用,可实现农村分散式污水的就地处理。与常规的分散式污水处理工艺相比,改进型三格化粪池具有占地面积小,建设及运行成本低,易于管理维护等优点。改进型三格化粪池的经济性和维护便利性符合农村污水处理设施的定位需求,且相较于传统三格化粪池,改进型的三格化粪池对生活污水的处理效率有显著提升。

参考文献 (18)

返回顶部

目录

/

返回文章
返回