-
高氯酸盐(
$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ )作为一种新型环境污染物,主要来源于军工企业和火箭推进剂制造厂等[1]。$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 会抑制人体甲状腺对碘离子的吸收,干扰甲状腺正常功能、代谢和发育,严重时会对骨髓和肌肉组织产生病变影响,诱发甲状腺癌,危害人类的健康[1-2]。常见的$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 的去除方法主要包括物化法[3-4]和生物法[5-6]。物化法的主要缺点是操作成本高,选择性低,处理后产生二次卤水废物。相反,微生物法可以使$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 完全转化为Cl−,具有对$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 降解速率快、反应条件温和等优点,因而被认为是有前景的$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 处理技术。在微生物处理技术中,厌氧颗粒污泥已逐步应用到
$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 废水处理中[7-8]。然而,由于$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 具有强氧化性会抑制厌氧颗粒污泥中微生物的生长[9],延长了颗粒污泥的培养周期。因此,如何快速培养具有去除$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 能力的高氯酸盐还原颗粒污泥,成为国内外研究的热点。在颗粒污泥驯化过程中,微生物作为颗粒污泥的主要组成部分,所选用的接种污泥对高氯酸盐还原颗粒污泥的形成起着至关重要的作用。有研究[10]表明,絮状活性污泥中含有少量高氯酸盐还原菌,具有降解$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 的潜力。WAN等[11]在硫填充床反应器中接种活性污泥同时去除硝酸盐($ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ )和$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 的过程中发现,部分反硝化细菌可以以$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 为电子受体。同时,WANG等[12]的研究表明,以颗粒污泥为接种污泥会有利于加速颗粒污泥的形成。YIN等[8]使用反硝化颗粒污泥为接种污泥,通过直接逐步增加高氯酸盐负荷的方法,经过99 d培养出高氯酸盐还原颗粒污泥,并发现高氯酸盐还原颗粒污泥中高氯酸盐还原菌和反硝化细菌为优势菌群。然而,在逐步增加高氯酸盐负荷的过程中,同时逐步降低硝酸盐进水浓度,能否加快高氯酸盐还原颗粒污泥的培养,目前并未有相关报道。本研究以反硝化颗粒污泥为接种污泥,通过逐步降低进水
$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ 同时逐步升高进水$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 浓度的方法,开展了高氯酸盐还原颗粒污泥快速培养的研究,考察了高氯酸盐还原颗粒污泥的培养过程中$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 去除性能和颗粒污泥特性(混合液悬浮固体浓度,混合液挥发性固体浓度,粒径分布和胞外聚合物组分),并对反硝化颗粒污泥和高氯酸盐还原颗粒污泥的菌群结构进行了分析,为进一步研究高氯酸盐还原颗粒污泥在$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 废水处理中的实际应用提供理论基础。
高氯酸盐还原颗粒污泥的快速培养及其特性分析
Rapid cultivation and characteristics of perchlorate reducing granular sludge
-
摘要: 为实现高氯酸盐还原颗粒污泥的快速培养,以反硝化颗粒污泥为接种污泥,对高氯酸盐还原颗粒污泥的快速培养进行了研究。在降低进水硝酸盐(
$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ )浓度的同时,采用逐步升高进水高氯酸盐($ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ )浓度的方法,考察了高氯酸盐还原颗粒污泥培养过程中$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 的去除以及颗粒污泥的特性。结果表明:以反硝化颗粒污泥为接种污泥,经过50 d快速培养出高氯酸盐还原颗粒污泥,$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 去除速率达96%以上;其混合液悬浮固体浓度(MLSS)为50.68 g·L−1,混合液挥发性固体浓度(MLVSS)为40.58 g·L−1,主要粒径分布在<0.60 mm和1.00~2.00 mm。$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ 浓度逐步降低的培养方式可缓解$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ 对颗粒污泥中各类微生物的毒性,为高氯酸盐颗粒污泥的快速培养提供了新的方法,具有重要的理论和实践意义。Abstract: For the rapid cultivation of perchlorate reducing granular sludge, denitrifying granular sludge were used as the inoculating sludge. Through gradually reducing nitrate concentration and elevating perchlorate concentration in the influent, the perchlorate ($ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ ) removal and granular sludge characteristics were investigated during the cultivation of perchlorate reducing granular sludge. The results showed that the well-formed perchlorate reducing granular sludge was successfully and rapidly obtained within 50 days, and the removal efficiency of$ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ was over 96%. The mixed liquid suspended solids concentration (MLSS) and the volatile solid concentration (MLVSS) were 50.68 g·L−1 and 40.58 g·L−1, respectively. And the main diameter distributed at <0.60 mm and 1.00~2.00 mm. The gradual reduction of nitrate concentration in the influent could alleviate the toxicity of perchlorate to the microorganisms in granular sludge. This study provides a new method for the rapid cultivation of perchlorate reducing granular sludge, and the theoretical and practical reference for the future researches.-
Key words:
- perchlorate /
- granular sludge /
- sludge characteristics /
- microbial community
-
表 1 运行参数
Table 1. Operation parameters
阶段 时间/d HRT/h 进水流速/(L·h−1) $ {\rm{ClO}}_{\rm{4}}^{\rm{ - }}$ /(mg·L−1)$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ /(mg·L−1)Ⅰ 0~10 3.50 1.00 50 200 Ⅱ 11~20 3.50 1.00 100 150 Ⅲ 21~30 3.50 1.00 150 100 Ⅳ 31~40 3.50 1.00 200 50 Ⅴ 41~50 3.50 1.00 250 0 表 2 α多样性参数
Table 2. Alpha diversity parameters
样品 OTU Shannon Simpson ACE Chao1 覆盖率 反硝化颗粒
污泥1 306 4.71 0.04 1 507.87 1 446.26 0.99 高氯酸盐还原
颗粒污泥656 3.18 0.12 868.04 831.47 0.99 -
[1] 郑雯静, 闻自强, 沈昊宇, 等. 高氯酸盐的来源、危害及其检测方法研究进展[J]. 环境科学与技术, 2018, 41(S1): 103-108. [2] 闻自强, 郑雯静, 沈昊宇, 等. 高氯酸盐的来源、水污染现状与去除技术研究进展[J]. 环境化学, 2019, 38(1): 209-216. doi: 10.7524/j.issn.0254-6108.2018022702 [3] AHN C H, OH H, KI D, et al. Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine[J]. Applied Microbiology and Biotechnology, 2009, 81: 1169-1177. doi: 10.1007/s00253-008-1797-3 [4] HOU P, YAN Z, CANNON F S, et al. Enhancement of perchlorate removal from groundwater by cationic granular activated carbon: Effect of preparation protocol and surface properties[J]. Chemosphere, 2018, 201: 756-763. doi: 10.1016/j.chemosphere.2018.03.024 [5] 万东锦, 刘永德, 樊荣, 等. 硫自养填充床生物反应器去除水中的高氯酸盐[J]. 环境工程学报, 2015, 9(11): 5267-5272. doi: 10.12030/j.cjee.20151122 [6] 刘颖男, 陶华强, 宋圆圆, 等. “异养-硫自养”组合工艺去除高浓度高氯酸盐特性[J]. 环境科学, 2018, 39(12): 5558-5564. [7] HAN Y, GUO J B, ZHANG Y Y, et al. Anaerobic granule sludge formation and perchlorate reduction in an upflow anaerobic sludge blanket (UASB) reactor[J]. Bioresource Technology Reports, 2018, 4: 123-128. doi: 10.1016/j.biteb.2018.09.012 [8] YIN P N, GUO J B, XIAO S M, et al. Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process[J]. Bioresource Technology, 2019, 276: 260-268. doi: 10.1016/j.biortech.2018.12.070 [9] NOR S J, LEE S H, CHO K S, et al. Microbial treatment of high-strength perchlorate wastewater[J]. Bioresource Technology, 2011, 102: 835-841. doi: 10.1016/j.biortech.2010.08.127 [10] 谢宇轩, 关翔宇, 王阳, 等. 异养条件下高氯酸盐降解细菌群落变化研究[J]. 安全与环境学报, 2014, 14(2): 143-148. [11] WAN D J, LIU Y D, WANG Y Y, et al. Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure[J]. Water Research, 2017, 108: 280-292. doi: 10.1016/j.watres.2016.11.003 [12] WANG S H, GUO J B, LIAN J, et al. Rapid start-up of the anammox process by denitrifying granular sludge and the mechanism of the anammox electron transport chain[J]. Biochemical Engineering Journal, 2016, 115: 101-107. doi: 10.1016/j.bej.2016.09.001 [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] 倪正. 活性污泥胞外聚合物提取条件优化及对Pb2+吸附性能和机理的研究[D]. 芜湖: 安徽工程大学, 2012. [15] 薛耀琦. 反硝化颗粒污泥反应器稳定运行特性研究[D]. 石家庄: 河北科技大学, 2016. [16] GUO J B, ZHANG C, LIAN J, et al. Effect of thiosulfate on rapid start-up of sulfur-based reduction of high concentrated perchlorate: A study of kinetics, extracellular polymeric substances (EPS) and bacterial community structure[J]. Bioresource Technology, 2017, 243: 932-940. doi: 10.1016/j.biortech.2017.07.045 [17] ZHANG C, GUO J B, LIAN J, et al. Bio-mixotrophic perchlorate reduction to control sulfate production in a step-feed sulfur-based reactor: A study of kinetics, ORP and bacterial community structure[J]. Bioresource Technology, 2018, 269: 40-49. doi: 10.1016/j.biortech.2018.08.084 [18] LIEBENSTEINER M G, OOSTERKAMP M J, STAMS A J. Microbial respiration with chlorine oxyanions: Diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms[J]. Annals of the New York Academy of Sciences, 2016, 1365: 59-72. doi: 10.1111/nyas.12806 [19] 谢宇轩, 刘菲, 关翔宇, 等. 基于功能基因表达的高氯酸盐与硝酸盐氮修复[J]. 环境工程学报, 2014, 8(4): 1423-1428. [20] 刘晓宇, 郭延凯, 马志远, 等. 硝酸盐反硝化颗粒污泥的快速培养与理化特性[J]. 环境工程学报, 2016, 10(3): 1300-1304. doi: 10.12030/j.cjee.20160348 [21] 刘晓宇, 王思慧, 薛耀琦, 等. 厌氧氨氧化颗粒污泥的快速培养与形成机理[J]. 环境工程学报, 2016, 10(3): 1223-1227. doi: 10.12030/j.cjee.20160335 [22] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45: 135-144. doi: 10.1016/j.watres.2010.08.018 [23] 唐鹏, 于德爽, 陈光辉, 等. 厌氧氨氧化颗粒污泥快速培养及其抑制动力学[J]. 环境科学, 2019, 40(9): 4152-4159. [24] 丛岩, 黄晓丽, 王小龙, 等. 厌氧氨氧化颗粒污泥的快速形成[J]. 化工学报, 2014, 65(2): 664-671. doi: 10.3969/j.issn.0438-1157.2014.02.042 [25] WANG Z C, GAO M C, WEI J F, et al. Extracellular polymeric substances, microbial activity and microbial community of biofilm and suspended sludge at different divalent cadmium concentrations[J]. Bioresource Technology, 2016, 205: 213-221. doi: 10.1016/j.biortech.2016.01.067 [26] LU X Q, ZHEN G Y, ESTRADA A L, et al. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source[J]. Bioresource Technology, 2015, 180: 264-273. doi: 10.1016/j.biortech.2015.01.010 [27] LIAN J, TIAN X L, GUO J B, et al. Effects of resazurin on perchlorate reduction and bioelectricity generation in microbial fuel cells and its catalysing mechanism[J]. Biochemical Engineering Journal, 2016, 114: 164-172. doi: 10.1016/j.bej.2016.06.028