-
磷酸盐化学键合胶凝材料的发展主要源自于一种快速充填体的需求[1],是由金属氧化物与正磷酸或可溶性磷酸盐及添加剂与其他掺料按一定比例,通过化学反应生成的无机胶凝材料[2-3]。其中,磷酸镁水泥(MPC)的研究较为广泛,具有超快凝结、早期强度高、体积变化小、耐热性好等显著优点,是一种潜在的化学胶凝材料,可用于快速修复加固、核废料的固化及医学领域[4-9]。SUGAMA等[10]以磷酸二氢铵(NH4H2PO4)和MgO为原料成功制备出了磷酸镁水泥,主要水化产物为NH4MgPO4·6H2O(鸟粪石)。LI等[11]以高温煅烧的MgO、KH2PO4和硼砂为原料,制备出了磷酸钾镁水泥,结果表明,煅烧温度越高,抗压强度越高。磷酸摩尔比(P/M)为1/4~1/5时,抗压强度最大;而当P/M减小,MPC的抗弯强度增大,并保持在一定的水平。黄义雄[12]通过掺入粉煤灰有效地改善了磷酸镁水泥的流动性,提高了水泥的后期强度,有效地减小了硫酸镁水泥的膨胀率,使成本降低。杨建明等[13]深入探讨了掺入不同量的硼砂对磷酸镁水泥缓凝时间、pH、材料强度等的影响,结果发现,掺入一定量的硼砂有较明显的吸热降温和调节pH的作用,使反应的凝结时间得到有效的延长。已有研究[14-15]发现,磷酸镁水泥存在许多的不足,如凝结时间快、成本过高,是普通硅酸盐水泥的3倍,对工业化应用带来较大的影响。因此,寻找适宜的工业废渣代替MgO成为磷酸镁水泥新的研究热点之一。
髙镁镍铁渣(ferronickel slag,FS)是红土镍矿经回转窑-电炉工艺冶炼镍铁过程中产生的固体废弃物,主要化学组成为SiO2、MgO、Fe2O3,三者合计含量通常占总量的83%~93%以上,MgO含量高达23%~33%。另外,FS是矿渣、钢渣、赤泥之后第4大冶炼工业废渣[16],主要处理方式是堆放或填埋,不仅得不到资源化利用,也对环境带来严重的破坏[17]。目前,FS的资源化利用主要集中于微晶玻璃制作[18]和矿物棉[19]等方面。为改善磷酸镁水泥凝结时间短等缺陷,同时,由于草酸能够与金属离子形成稳定的配位化合物[20-21],因此,本研究提出以草酸(OA)代替磷酸,以富含镁化合物的FS代替MgO,与OA反应,制备镍铁渣基草酸盐化学键合材料(FS-OCBCMs),分别考察了镍铁渣与草酸质量比(m(FS/OA))、水灰质量比(m(W/C))、粉煤灰(FA)掺量和缓凝剂种类及掺量对材料性能的影响,并采用XRD和SEM分析了FS-OCBCMs水化产物及其微观形貌,为高镁镍铁渣的资源化利用提供参考。
高镁镍铁渣基草酸盐化学键合材料的制备及性能
Preparation and properties of high magnesium ferronickel slag based-oxalate chemically bonded ceramics materials
-
摘要: 为提高镍铁渣(FS)的综合利用率,提出利用FS与草酸(OA)反应制备镍铁渣基草酸盐化学键合材料(FS-OCBCMs),主要考察了m(FS/OA)质量比、水灰质量比(m(W/C))、粉煤灰(FA)掺量、缓凝剂种类及掺量对材料凝结时间和力学性能的影响,并采用XRD和SEM分析手段,表征了材料的物相组成和微观结构。结果表明:随m(FS/OA)的增加,凝结时间先减小后增大,抗压强度呈先增大后减小的趋势;当m(W/C)=0.14~0.17时,材料28 d时抗压强度均达到33 MPa以上;当m(W/C)>0.17时,抗压强度随之降低。FA掺量对材料早期抗压强度影响较大,随FA的增加,早期强度不断降低,而后期强度与未掺FA材料的抗压强度接近。缓凝剂硼砂(B)掺入具有较好的缓凝作用,且掺量为1%时,材料力学性能最好,28 d时抗压强度可达45 MPa,而三聚磷酸钠(P)的掺入,不具有缓凝作用,还使凝结时间大幅度降低;当掺量为5%时,凝结时间降到14 min,且对材料早期强度影响较大。FS-OCBCMs的主要产物为结晶较好的MgC2O4·2H2O,且当掺入1%的B时,产物结晶更好,同时提高了材料的抗压强度。以上研究结果对于实现高镁镍铁渣的资源化利用具有一定的指导意义。Abstract: In order to improve the comprehensive utilization of ferronickel slag (FS), the ferronickel slag based-oxalate chemically bonded ceramics materials (FS-OCBCMs) were prepared through the reaction of FS and oxalic acid (OA). In this study, the effects of mass ratio of m(FS/OA), water-cement ratio m(W/C), fly ash (FA), retarder type and content on the setting time and mechanical properties of FS-OCBCMs were investigated. Additionally, the phase compositions and microstructures of FS-OCBCMs were characterized by XRD and SEM. The results showed that with the increase of m(FS/OA), the setting time decreased first and then increased, and the compressive strength increased first and then decreased. When m(W/C) was 0.14~0.17, the compressive strength of FS-OCBCMs reached 33 MPa or more at the age of 28 d. When m(W/C) was over 0.17, its compressive strength decreased accordingly. The content of FA had a great influence on the early compressive strength. The early compressive strength decreased with the increase of FA, while the later compressive strength of FS-OCBCMs was close to that without FA. The incorporation of borax (B) resulted in good retarding effect of FS-OCBCMs, at the B incorporation content of 1%, the best mechanical properties of FS-OCBCMs were achieved, compressive strength could reach 45 MPa after curing 28 d. However, the addition of tripolyphosphate (P) in FS-OCBCMs had no retarding effect, but also greatly reduced the setting time, the setting time decreased to 14 minutes at the P content of 5%, which had a great influence on the early strength of FS-OCBCMs. The main product of FS-OCBCMs was MgC2O4·2H2O with good crystallinity. 1% B addition would lead to a better crystallized product and improve the compressive strength of FS-OCBCMs. This study will provide reference for the realization of resource utilization of high magnesium ferronickel slag in a certain degree.
-
表 1 不同配比相应材料的凝结时间
Table 1. Setting time of the corresponding materials with different proportions
质量比 磷酸镁水泥
凝结时间/min草酸盐水泥
凝结时间/min2∶1 17 76 3∶1 16 82 4∶1 11 89 5∶1 9 92 -
[1] VECBISKENA L, DE NARDO L, CHIESA R. Nanostructured calcium phosphates for biomedical applications[J]. Key Engineering Materials, 2014, 604: 212-215. doi: 10.4028/www.scientific.net/KEM.604.212 [2] LE ROUZIC M, CHAUSSADENT T, PLATRET G, et al. Mechanisms of k-struvite formation in magnesium phosphate cements[J]. Cement and Concrete Research, 2017, 91: 117-122. [3] CHAU C K, QIAO F, LI Z. Microstructure of magnesium potassium phosphate cement[J]. Construction & Building Materials, 2011, 25(6): 2911-2917. [4] SEEHRA S S. Rapid setting magnesium phosphate cement for quick repair of concrete pavement-characterisation and durability aspects[J]. Cement & Concrete Research, 1993, 23(2): 254-266. [5] YANG Q, ZHU B, ZHANG S, et al. Properties and applications of magnesia-phosphate cement mortar for rapid repair of concrete[J]. Cement & Concrete Research, 2000, 30(11): 1807-1813. [6] WAGH A S, STRAIN R, JEONG S Y, et al. Stabilization of rocky flats pu-contaminated ash within chemically bonded phosphate ceramics[J]. Journal of Nuclear Materials, 1999, 265(3): 295-307. doi: 10.1016/S0022-3115(98)00650-3 [7] QIAN J, YOU C, WANG Q, et al. A method for assessing bond performance of cement-based repair materials[J]. Construction and Building Materials, 2014, 68: 307-313. doi: 10.1016/j.conbuildmat.2014.06.048 [8] MESTRES G, AGUILERA F S, MANZANARES N, et al. Magnesium phosphate cements for endodontic applications with improved long-term sealing ability[J]. International Endodontic Journal, 2014, 47(2): 127-139. doi: 10.1111/iej.12123 [9] VIANI A, GUALTIERI A F. Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes[J]. Cement and Concrete Research, 2014, 58: 56-66. doi: 10.1016/j.cemconres.2013.11.016 [10] SUGAMA T, KUKACKA L E. Characteristics of magnesium polyphosphate cements derived from ammonium polyphosphate solutions[J]. Cement and Concrete Research, 1983, 13(4): 499-506. [11] LI Y, SUN J, CHEN B. Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement[J]. Construction and Building Materials, 2014, 65: 177-183. doi: 10.1016/j.conbuildmat.2014.04.136 [12] 黄义雄. 磷酸镁水泥的粉煤灰改性与修补性能研究[D]. 重庆: 重庆大学, 2011. [13] 杨建明, 钱春香, 焦宝祥, 等. 缓凝剂硼砂对磷酸镁水泥水化硬化特性的影响[J]. 材料科学与工程学报, 2010, 28(1): 31-35. [14] QIAO F, CHAU C K, LI Z. Property evaluation of magnesium phosphate cement mortar as patch repair material[J]. Construction & Building Materials, 2010, 24(5): 695-700. [15] WEN J B, TANG X S, HUANG G H, et al. Influencing factors of setting time about magnesium phosphate cement[J]. Key Engineering Materials, 2017, 727: 1035-1040. doi: 10.4028/www.scientific.net/KEM.727.1035 [16] 范春平, 倪文, 杨慧芬, 等. 利用铁合金渣制备胶凝材料及其微观分析[J]. 硅酸盐通报, 2007, 26(3): 537-541. doi: 10.3969/j.issn.1001-1625.2007.03.025 [17] 盛广宏, 翟建平. 镍工业冶金渣的资源化[J]. 金属矿山, 2005(10): 68-71. doi: 10.3321/j.issn:1001-1250.2005.10.019 [18] 张文军, 李宇, 李宏, 等. 利用镍铁渣及粉煤灰制备CMSA系微晶玻璃的研究[J]. 硅酸盐通报, 2014, 33(12): 3359-3365. [19] 何其捷. 用镍铁渣制作矿物棉[J]. 玻璃纤维, 1990, 12(4): 34-35. [20] 张静, 沈国良, 马晓雨, 等. 草酸镁的合成与应用研究[J]. 化学工程师, 2013, 27(3): 43-46. doi: 10.3969/j.issn.1002-1124.2013.03.014 [21] 凌程凤, 高雪艳, 杨姣, 等. 草酸镁分解法制备纳米氧化镁[J]. 无机盐工业, 2005, 37(9): 29-30. doi: 10.3969/j.issn.1006-4990.2005.09.010 [22] LIU R Q, CHEN D Q, HOU T B. Study on preparation and the setting time of magnesium phosphate cement[J]. Advanced Materials Research, 2014, 1049-1050: 251-255. doi: 10.4028/www.scientific.net/AMR.1049-1050.251 [23] YU Y, XU C, DAI H. Preparation and characterization of a degradable magnesium phosphate bone cement[J]. Regenerative Biomaterials, 2016, 3(4): 231-237. doi: 10.1093/rb/rbw024 [24] LI D, LI P, FENG C. Research on water resistance of magnesium phosphate cement[J]. Journal of Building Materials, 2009, 12(5): 505-510. [25] LIU R, YANG Y, SUN S. Effect of M/P and borax on the hydration properties of magnesium potassium phosphate cement blended with large volume of fly ash[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2018, 33(5): 11159-1167. [26] 胡华洁, 杜骁, 陈兵. 原料配比参数对磷酸镁水泥性能的影响[J]. 四川建筑科学研究, 2015, 41(4): 73-78. doi: 10.3969/j.issn.1008-1933.2015.04.018 [27] HALL D A, STEVENS R, JAZAIRI B E. Effect of water content on the structure and mechanical properties of magnesia-phosphate cement mortar[J]. Journal of the American Ceramic Society, 2010, 81(6): 1550-1556. [28] 徐选臣, 邵云霞. 水灰比对磷酸钾镁水泥性能的影响[J]. 硅酸盐通报, 2013, 32(2): 236-241. [29] MA H, XU B, LIU J, et al. Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste[J]. Materials & Design, 2014, 64: 497-502. [30] MO L, LV L, DENG M, et al. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste[J]. Cement and Concrete Research, 2018, 111: 116-129. doi: 10.1016/j.cemconres.2018.06.003 [31] LI Y, CHEN B. Factors that affect the properties of magnesium phosphate cement[J]. Construction & Building Materials, 2013, 47: 977-983. [32] WEN J B, ZHANG L X, TANG X S, et al. Effect of borax on properties of potassium magnesium phosphate cement[J]. Materials Science Forum, 2018, 914: 160-167. doi: 10.4028/www.scientific.net/MSF.914.160 [33] PIANI L, PAPO A. Sodium tripolyphosphate and polyphosphate as dispersing agents for alumina suspensions: rheological characterization[J]. Journal of Engineering, 2013, 2013: 1-4.