-
近年来,随着环保意识的增强、执法力度的加大以及污水处理技术的不断成熟,工业废水排放量持续增长的趋势得到有效遏制,但是工业废水的排放量依然十分巨大。据有关资料显示,2017年工业废水的排放量达到1.8×1010 t左右,占废水排放总量的30%左右,其中高盐高浓度有机废水因其成分复杂、盐度高、难以处理而备受关注[1]。高盐废水是指总含盐量大于1%(质量分数)的废水[2],这类废水中往往含有高浓度的有机物。高盐高浓度有机废水广泛存在于制药、染料、化工、制革等多个行业[3],如果直接排放会对自然环境和人类生活环境造成严重的危害。同时,高浓度的盐分也会抑制有机废水生物处理中微生物的生长,因此,对高盐废水的脱盐处理,具有十分重要的意义[4]。如何处理高盐高浓度的有机废水一直是工业废水处理中的历史性难题[5]。目前,市场上处理此类废水的方法主要有热分离法[6-7]、膜分离法[8]、离子交换法[9]、电渗析法[10]、电吸附法[11]等,但是这些方法往往伴有占地面积大、结构复杂、运行成本高的缺点。
冷冻法是利用水分子在结晶过程中会排斥杂质的原理,从而获得较为纯净的冰和浓缩的溶液[12]。纯净的冰溶解后,COD和含盐量大幅度下降,可满足排放要求,而多次浓缩的溶液可以通过焚烧等方式进行处置。此外,冷冻法具有低能耗(冻结比蒸发过程能耗更低,水的蒸发热(40.6 kJ·mo1−1)几乎是融合热的7倍(6.01 kJ·mo1−1)[13]、少污染、腐蚀结垢低、适用范围广等优点[14]。
本研究采用多级冷冻的技术处理高盐高浓度模拟有机废水,探究了结冰率、冷冻温度、初始浓度(COD和盐浓度)、冷冻接触面积与脱盐率和有机物去除率的关系,将该工艺应用于实际的化工废水,并通过多级冷冻的方式,使化工废水的盐浓度与COD满足《污水综合排放标准》(GB 8978-1996)三级标准的要求。研究结合了两元相图,在分子水平上提出了多级冷冻脱盐、去除有机物的机理,探索了冷冻结晶工艺对其他水质指标(氨氮、总氮)的去除效果。
多级冷冻工艺对高盐高浓度有机废水的处理效果及去除机理
Treatment performance and mechanism of high-salt and high-concentration organic wastewater using multi-stage freezing technology
-
摘要: 探索了冷冻结晶工艺去除高盐高浓度模拟有机废水的影响因素,将多级冷冻工艺应用于模拟废水和实际废水。结果表明:在其他因素固定的条件下,结冰率越高,有机物去除率和脱盐率就越低;冷冻温度越低,有机物去除率和脱盐率越低;有机物去除率和脱盐率随初始盐浓度或初始COD的增大而降低;冷冻接触面积越大,有机物去除率和脱盐率越高。初始COD为 8 000.0 mg·L−1,初始盐浓度为8 000.0 mg·L−1的模拟废水在4级冷冻后,COD和含盐量分别降低至240.0 mg·L−1和516.9 mg·L−1,去除率分别为97.0%和93.5%。初始COD为55 690.0 mg·L−1,初始盐浓度为54 648.9 mg·L−1 (以NaCl计)的实际化工废水在经过6级冷冻处理后,COD和含盐量分别降低至491.3 mg·L−1和983.3 mg·L−1,有机物去除率为99.1%,脱盐率为98.2%,可达到市政管网的接管要求。上述研究结果为高盐高浓度有机废水的处理提供了新的解决方案。Abstract: In this study, the factors affecting the treatment of simulated high-salt and high-concentration organic wastewater by freezing technique were firstly explored, and the multi-stage freezing method was used to treat the simulated and actual wastewater. The results showed that when other factors were fixed, the higher the icing rate was, the lower the removal efficiencies of organic and salinity were, the lower the freezing temperature was, the lower the removal efficiencies of organic and salinity were, the removal efficiencies of organic and salinity decreased with the increase of the initial salt concentration or COD value, the larger the frozen contact area was, the higher the removal efficiencies of organic and salinity were. For the simulated wastewater with initial COD of 8 000.0 mg·L−1 and initial salt concentration of 8 000.0 mg·L−1, four-stage freezing could reduce COD and salt content to 240.0 mg·L−1 and 516.9 mg·L−1, respectively, and the corresponding removal efficiencies were 97.0% and 93.5%. For the actual chemical wastewater with initial COD of 55 690.0 mg·L−1 and initial salt concentration of 54 648.9 mg·L−1 (as NaCl), six-stage freezing could reduce COD and salt content to 491.3 mg·L−1 and 983 mg·L−1, respectively, and the corresponding removal efficiencies were 99.12% and 98.20%, which could meet the requirements of municipal pipe network. This study provides a new way for the treatment of high salt and high concentration organic wastewater.
-
Key words:
- multi-stage freezing /
- desalination /
- organic matter /
- simulated wastewater /
- chemical wastewater /
- removal mechanism
-
表 1 某化工废水的水质指标
Table 1. Water quality indicators of chemical wastewater
水质
指标浓度/
(mg·L−1)执行标准 标准限值/
(mg·L−1)COD 55 690.0 污水综合排放标准
(GB 8978-1996)500 含盐量 54 648.9 — 4 000 氨氮 75.6 — 8 总氮 290.4 — 20 -
[1] 周海云, 姜伟立, 徐晨, 等. 机械蒸汽再压缩技术处理阿斯巴甜生产废水的研究[J]. 工业水处理, 2017, 37(9): 60-63. doi: 10.11894/1005-829x.2017.37(9).060 [2] 何睦盈, 张亚峰. 冷冻脱硝-纳滤-热泵蒸发技术处理高盐废水[J]. 给水排水, 2013, 39(11): 60-63. doi: 10.3969/j.issn.1002-8471.2013.11.013 [3] 贾萌, 杨郭, 袁基刚, 等. 膜组合工艺处理工业园区含盐废水中试研究[J]. 中国给水排水, 2018, 63(11): 101-104. [4] 姜超, 隋倩雯, 陈梅雪, 等. 耐盐复合菌剂强化生物工艺处理高盐废水的快速启动[J]. 环境工程学报, 2017, 11(7): 3929-3935. doi: 10.12030/j.cjee.201604122 [5] GUO Z, DING W D, LIU X W, et al. Two-dimensional black phosphorus: A new star in energy applications and the barrier to stability[J]. Applied Materials Today, 2019, 14: 51-58. doi: 10.1016/j.apmt.2018.11.002 [6] 冯叶成, 占新民, 文湘华, 等. 活性污泥处理系统耐含盐废水冲击负荷性能[J]. 环境科学, 2000, 21(1): 106-108. doi: 10.3321/j.issn:0250-3301.2000.01.026 [7] AL-SAHALI M, ETTOUNEY H. Developments in thermal desalination processes: Design, energy, and costing aspects[J]. Desalination, 2007, 214(1/2/3): 227-240. [8] 任晓晶. 澳大利亚煤层气产出水脱盐处理方法[J]. 天然气工业, 2012, 32(6): 78-81. doi: 10.3787/j.issn.1000-0976.2012.06.019 [9] 郭海燕, 徐成燕, 俞彬. 石化行业高含盐废水的分盐零排放中试及应用[J]. 中国给水排水, 2018, 34(7): 99-102. [10] 操家顺, 马宏伟, 李超, 等. 印染废水电渗析脱盐中试及影响因素[J]. 净水技术, 2015, 34(2): 20-25. [11] WELGEMOED T J, SCHUTTE C F. Capacitive deionization technology: An alternative desalination solution[J]. Desalination, 2005, 183(1/2/3): 327-340. [12] 龙国庆. 燃煤电厂湿法脱硫废水蒸发结晶处理工艺的选择[J]. 中国给水排水, 2013, 29(24): 5-8. [13] 梁宏旭, 赵新坤, 宋彬, 等. 改性活性碳毡电吸附污水中的Zn2+[J]. 中国环境科学, 2018, 38(4): 1336-1345. [14] 李彬, 王志伟, 安莹, 等. 膜-生物反应器处理高盐废水膜面污染物特性研究[J]. 环境科学, 2014, 35(2): 643-650. [15] 唐奕, 周建飞, 廖学品, 等. 冷冻法脱除制革废水中的中性盐[J]. 中国皮革, 2017, 46(3): 6-11. [16] 何品晶, 赵有亮, 郝丽萍, 等. 模拟废水高温厌氧消化出水中SMP的特性研究[J]. 中国环境科学, 2010, 30(3): 315-321. [17] 崔爱玲, 赵朝成, 安宁, 等. 电场法处理模拟含盐废水研究[J]. 环境工程, 2016(s1): 18-22. [18] WEEKS W F, ACKLEY S. The growth, structure and properties of sea ice[M]//NORBERT Untersteiner. The Geophysics of Sea Ice. New York: Plenum Press, 1986: 9-164. [19] HASAN M, ROTICH N, JOHN M, et al. Salt recovery from wastewater by air-cooled eutectic freeze crystallization[J]. Chemical Engineering Journal, 2017, 326: 192-200. doi: 10.1016/j.cej.2017.05.136 [20] GUO Z, CUI K P, ZENG G M, et al. Silver nanomaterials in the natural environment: An overview of their biosynthesis and kinetic behavior[J]. Science of the Total Environment, 2018, 643: 1325-1336. doi: 10.1016/j.scitotenv.2018.06.302 [21] YU T, MA J, ZHANG L Q. Factors affecting ice crystal purity during freeze concentration process for urine treatment[J]. Journal of Harbin Institute of Technology, 2007, 14(5): 593-597. [22] GUO Z, CHEN G Q, ZENG G M, et al. Determination of inequable fate and toxicity of Ag nanoparticles in phanerochaete chrysosporium biofilm system through different sulfide sources[J]. Environmental Science Nano, 2016, 3(5): 1027-1035. doi: 10.1039/C6EN00156D [23] 左武, 周尤超, 葛仕福, 等. 高含盐有机废液热处理技术研究进展[J]. 环境工程, 2018, 36(4): 47-51. [24] VRBKA L, JUNGWIRTH P. Brine rejection from freezing salt solutions: a molecular dynamics study[J]. Physical Review Letters, 2005, 95(14): 148501. doi: 10.1103/PhysRevLett.95.148501 [25] WANG P, CHUNG T S. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy[J]. Water Research, 2012, 46(13): 4037-4052. doi: 10.1016/j.watres.2012.04.042 [26] HOBBS P V. Ice physics[J]. Physics Today, 1975, 28(11): 71-72. doi: 10.1063/1.3069211 [27] LORAIN O, THIEBAUD P, BADORC E, et al. Potential of freezing in wastewater treatment: Soluble pollutant applications[J]. Water Research, 2001, 35(2): 541-547. doi: 10.1016/S0043-1354(00)00287-6 [28] 张岩. 乌梁素海结冰过程中污染物迁移机理及其应用研究[D]. 呼和浩特: 内蒙古农业大学, 2012. [29] RODRIGUEZ A. Application of freezing crystallization phenomena in wastewater treatment: Removal of nitrates, phosphates, surfactants and alcohols[C]//The Chemical Industry and Engerneering Society of China. CHISA 2004: 16th International Congress of Chemical and Process Engineering, 2004: 7295-7303. [30] 郝利娜, 张维佳. 自然冷冻法处理生活污水的研究初探[J]. 中国科技信息, 2007(23): 18-19. [31] MARTINEZ G S, MARTINEZ V, BULBULIAN S. Chromium(VI) separation from tannery wastes utilizing hydrotalcites[J]. Separation Science and Technology, 2005, 39(3): 667-681. doi: 10.1081/SS-120028000