-
伴随着国内原油品质逐渐降低,氢燃料电池的高速发展,以及人们对环境保护意识的增强等,氢气的需求正在迅速增加。低浓度含氢废气中存在一定比例的氢气以及N2、CH4、CO2等其他气体,直接作为燃料进行管网燃烧,不仅未能高效利用,还会对环境产生较大污染。因此,最适宜的途径是从现有的含氢废气中高效地回收氢气和其他气体[1-2]。目前,变压吸附(pressure swing adsorption,PSA)工艺已广泛应用于含氢气体处理中,其设备简单,提纯纯度高,易于自动化;吸附剂通常以颗粒状或柱状堆积于固定床吸附塔中,在交变压力下,尺寸较小的吸附剂粒子间相互摩擦严重,随气流逸失或堵塞孔道,而采用较大尺寸的颗粒又增加了分子向内扩散的时间,增大吸附剂的库存量,且导致装置能量利用效率低[3-5]。
沸石分子筛具有比表面积大、孔径均一、可再生等特点,可用于筛分不同尺寸的流体分子[6-8]。其中有效孔径为0.5 nm的5A沸石分子筛被广泛应用于工业含氢气体的变压吸附提纯过程[9-11]。结构化5A分子筛吸附剂是一种具有复合结构的吸附材料,克服了传统分子筛吸附剂的不足[12-13],可避免在交变压力下分子筛粒子间的磨损,提供了适用于高频操作的高表面活性通道,极大地提高了吸附材料的传质速率,有利于开发更紧凑的吸附装备[12-14]。LARA等[15]采用土聚凝胶-热转化(GGTC)结合浸涂法,ERIK等[16]采用水热合成法,均在氧化铝基体表面制备出沸石分子筛涂层,用于气体的分离提纯,但涂层厚度较薄,气体吸附量较低;ASIER等[17]采用浸涂法和水热合成法分别在不锈钢网上制备沸石分子筛涂层,研究结果表明浸涂法具有较大的负载量,但其与基体结合强度较弱;RYAN等[18]采用干喷、湿淬纺丝法制备出沸石分子筛内芯,醋酸纤维素外护套的双层中空纤维管,在循环变压吸附中,产品的纯度可达99.2%,表现出优异的气体分离性能。为提高吸附材料强度、分子筛负载量以及材料在吸附分离时的传质特性,本研究以泡沫镍金属为基体,采用浸渍提拉工艺制备结构化5A分子筛吸附材料,优化了制备工艺参数,并对其性能进行了评价。
泡沫镍负载5A分子筛结构化吸附材料的制备及性能
Preparation and properties of structured adsorbent materials with foam nickel loaded with 5A molecular sieve
-
摘要: 以泡沫镍金属为基体,制备结构化5A分子筛吸附材料,探讨了焙烧温度、硅/铝溶胶固含量比、5A分子筛原粉固含量对结构化5A分子筛性能的影响。采用SEM、TG、XRD、BET、超声振荡等分析方法对样品进行了微观组织结构和结合强度的分析和表征;采用H2和N2的混合气体为吸附质进行了N2在结构化材料中的吸附穿透曲线测定。结果表明,具有较高强度的泡沫镍骨架包埋于分子筛层中,且结构化吸附材料中微孔和介孔并存。在焙烧温度为550~650 ℃时,5A分子筛可较好地保持原有晶型结构;硅/铝溶胶固含量比为1∶1时,结构化5A分子筛微孔孔体积最大;分子筛原粉固含量为79%时,结构化5A分子筛质量损失率仅为0.75%。结构化5A分子筛具有较高的吸附容量,可达544 m2·g−1。与球状吸附剂相比,结构化吸附材料具有更小的传质区与传质阻力。Abstract: Structured 5A molecular sieve adsorbent was prepared with foam nickel as matrix. The effects of calcination temperature, solid content ratio of silicon/aluminum sol and raw powder content of 5A molecular sieve on the properties of structured 5A molecular sieves were discussed. The microstructure and bonding strength of the samples were analyzed and characterized by SEM, TG, XRD, BET, ultrasonic vibration. The adsorption breakthrough curves of N2 in the structured material were measured by using the mixed gas of H2 and N2 as the adsorbate. The results show that the foam nickel skeleton with high strength was embedded in the molecular sieve layer, and the micropores and mesopores coexisted in the structured adsorbent material. 5A molecular sieve could maintain its original crystal structure at the calcination temperature up to 550~650 ℃. The structured 5A molecular sieve had the largest microporous volume when the solid content ratio of silicon/aluminum sol was 1∶1. The mass loss rate of structured 5A molecular sieve was less than 0.75% when the raw powder content of molecular sieve was 79%. The structured 5A molecular sieve had appreciable adsorption capacity up to 544 m2·g−1. Compared to the spherical adsorbent, the structured adsorption material had smaller mass transfer zone and mass transfer resistance.
-
Key words:
- 5A molecular sieve /
- loading /
- structuration /
- adsorption material
-
表 1 5A分子筛原粉固含量对吸附材料孔结构及结合强度的影响
Table 1. Effect of 5A molecular sieve content on pore structure and bonding strength of adsorbent
样品号 分子筛原粉固含量/% SBET/(m2·g−1) Smic/(m2·g−1) Sext/(m2·g−1) Vmic/(cm3·g−1) 脱落率/% S1 70 414 326 88 0.128 0.54 S2 79 544 437 108 0.170 0.75 S3 84 554 451 103 0.174 3.39 S4 89 569 466 103 0.180 5.42 表 2 不同5A分子筛吸附材料结构形式填充床上的N2吸附性能
Table 2. Adsorption properties of N2 on packed bed with different 5A molecular sieve adsorbent structure
样品 填充柱长/cm 柱前压/MPa 透过时间/min 吸附量/(mmol·g−1) 有效成分吸附量/(mmol·g−1) 5A分子筛球 20 0.4 22 0.81 0.81 结构化5A分子筛 20 0.4 14 0.50 0.74 -
[1] 卫建军, 刘永忠, 张亮, 等. 炼油厂中含氢气体排放的最小化与废氢资源化处置方案研究[J]. 炼油技术与工程, 2010, 40(9): 16-20. doi: 10.3969/j.issn.1002-106X.2010.09.004 [2] 李建勋, 李顺德. 炼油厂从含氢气体中回收利用氢气的方案探讨[J]. 甘肃科技纵横, 2014, 43(7): 32-34. doi: 10.3969/j.issn.1672-6375.2014.07.012 [3] 郭海亮. 固态吸附剂的探究[J]. 中国石油和化工标准与质量, 2014, 34(6): 269. doi: 10.3969/j.issn.1673-4076.2014.06.249 [4] ARISTOV Y, RETUEEIA G, CACEIOLA G, et al. A family of new working materials for solid sorption air conditioning systems[J]. Applied Thermal Engineering, 2002, 22(2): 191-204. [5] ICHIURA H, KUBATA Y, WU Z H, et al. Preparation of zeolite sheet using a papermaking technique[J]. Journal of Materials Science, 2001, 36(4): 913-917. doi: 10.1023/A:1004851101749 [6] 唐静思.低硅铝比ZSM-48分子筛的合成与表征[D].太原: 太原理工大学, 2016. [7] WEUTKAMP J. Zeolites and catalysis[J]. Solid State Ionics, 2000, 131(1/2): 175-188. [8] 王豪, 杨清, 吴雁, 等. 分子筛吸附法脱除废水中的聚丙烯酰胺[J]. 环境工程学报, 2015, 9(3): 1289-1296. doi: 10.12030/j.cjee.20150350 [9] 陈翔. 多级孔道5A分子筛的合成及吸附性能研究[D].上海: 华东理工大学, 2016. [10] XIAO Q, XU X M, NA L. Breakthrough analysis for adsorption of phosphine on 5A molecular sieve[J]. Chemical Engineering & Technology, 2011, 34(1): 140-145. [11] NAN S, QUAN P, ZHANG H, et al. Enhanced thermal conductivity of 5A molecular sieve with BNs segregated structures[J]. Advanced Engineering Materials, 2018, 20(2): 1700745. doi: 10.1002/adem.201700745 [12] DENIS C, DAVID G D, LES J.Rotary pressure swing adsorption apparatus: US6406523B1[P]. 2002-06-18. [13] BOWIE G K, DENIS J C.Pressure swing adsorption with axial or centrifugal compression machinery: US6488747B1[P]. 2002-11-03. [14] BOWIE G K, DAVID G D, CHRISTOPHER R M, et al. Modular pressure swing adsorption apparatus: US7094275 B2[P]. 2006-08-22. [15] LARA M, TORRES R, GUTIERREZ A, et al. Separation of CO2 and N2 with a lithium-modified silicalite-1 zeolite membrane[J]. International Journal of Greenhouse Gas Control, 2012, 10(10): 494-500. [16] ERIK S, SIMON B, DANIL K, et al. MFI membranes for separation of carbon dioxide from synthesis gas at high pressures[J]. Journal of Membrane Science, 2015, 486: 132-137. doi: 10.1016/j.memsci.2015.03.041 [17] ASIER E, PALPMA N, LUCIANO C, et al. Deposition of zeolitic coatings onto fecralloy microchannels-washcoating vs in situ growing[J]. Microporous and Mesoporous Materials, 2009, 123(1/2/3): 113-122. [18] RYAN P L, NAOKI B, DHAVAL A B. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15227-15240. doi: 10.1016/j.ijhydene.2012.07.110 [19] SING K S W, WILLIAMS R T. Physisorption hysteresis loops and the characterization of nanoporous materials[J]. Adsorption Science Technolgy, 2004, 22(10): 773-782. doi: 10.1260/0263617053499032 [20] 张云林, 刘晓鹏, 王树茂, 等. 碱处理对5A分子筛孔结构和氢气吸附行为的影响[J]. 材料科学与工程学报, 2014, 32(6): 840-844.