-
在二次工业革命至自动化产业升级的过程中,人类活动对能源的需求日益增大,对自然土壤的污染亦日趋严重。我国环境保护部与国土资源部2014年发布《全国土壤污染状况调查公报》后,我国土壤污染程度之深已受到社会各界的重视[1]。在土壤污染物中,挥发性、半挥发性污染物因具有高迁移能力和高毒性而受到广泛的关注[2]。目前,土壤热脱附修复技术是处置该类污染物最有效的办法之一[3]。该技术利用间接或直接的加热方法,将土壤加热至特定温度,使土壤中的挥发性、半挥发性污染物挥发[4]或与其他物质发生共沸[5]、亦或发生分解反应[6],使其最终进入气相,再被下一工序处理。按照土壤处置位置,热脱附技术分为原位与异位加热。其中异位加热技术须对污染场地进行挖掘、运输、回填等,但对目前部分距人口密集城市区域近的挥发性污染物场地并不适用。
土壤电阻加热技术(electrical resistance heating,ERH)是现阶段发展较快的一种能耗低、效率高、施工相对简单的原位热脱附技术。该技术利用焦耳定律将土壤均匀加热至水沸点,达到热脱附条件[7]。土壤热脱附对土壤污染物处置效果明显,但对土壤加热会影响土壤性质,从而会改变土壤功能性[8],故在土壤修复过程中,将污染物去除与土壤功能性保存相结合,对于土壤修复技术效果评估至关重要[9]。相较于常规土壤加热技术(燃气、电加热棒),电阻加热不仅对土壤施加低温热场(<150 ℃),且有电场(<9.8 V·cm−1)存在[10]。该技术对土壤性质的影响应更为复杂。然而,目前关于ERH修复过程结合污染物去除与土壤性质变化的综合研究报道很少;同时,关于ERH、热修复、微波修复后土壤性质变化的研究也非常有限。本研究在查阅热处置土壤性质变化相关资料的基础上,结合森林火灾与土壤电动修复相关研究,对ERH修复过程中土壤功能性变化等关键问题进行了分析讨论并提出对策,以期为我国有机污染土壤原位修复技术的应用提供参考。
土壤电阻加热技术原位修复有机污染土壤的关键问题与展望
Key issue and expectation of soil electrical resistance heating remediation technology
-
摘要: 为解决我国近年来重污染企业搬迁遗留的有机污染土壤问题,土壤电阻加热修复技术(electrical resistance heating,ERH)等热处置技术日益受到重视。ERH是目前修复挥发性、半挥发性有机污染土壤最具有潜力的原位热修复技术之一,其污染物去除率及土壤性质变化是用以评估该土壤修复技术的核心指标。在查阅文献的基础上,系统分析了热处置及电阻加热技术相关原理与适用范围,并对ERH处置过程中土壤性质可能发生的变化进行了深入讨论,以期为我国有机污染土壤原位热修复技术的推广和应用提供参考。Abstract: In order to solve the problem of organic polluted soil left over from the relocation of heavy polluting enterprises in recent years, thermal remediation technologies such as electrical resistance heating (ERH), etc. have attracted an increasing attentions. ERH is one of the most potential in-situ thermal remediation technologies for the remediation of volatile and semi-volatile organics-contaminated soil. Pollutant removal efficiency and changes of soil property are the core indicators of soil remediation technology. In this review, the relevant principles and application scope of thermal disposal and ERH were systematically analyzed base on summarizing and analyzing of existing literatures. The possible changes in soil properties during ERH disposal were further discussed. It is expected that the results will provide reference for the popularization and application of in-situ thermal disposal technology in organics-contaminated soil remediation.
-
Key words:
- soil remediation /
- thermal desorption /
- electrical resistance heating /
- in site
-
表 1 目标污染物热处置应用中的重要参数
Table 1. Key factors of thermal remediation of the target contaminants
表 2 目标污染物ERH处置应用中的重要参数
Table 2. Key factors of ERH disposal of target contaminants
-
[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220 [2] KAUFMANN K, CHAPMAN S J, CAMPBELL C D, et al. Miniaturized test system for soil respiration induced by volatile pollutants[J]. Environmental Pollution, 2006, 140(2): 269-278. doi: 10.1016/j.envpol.2005.07.011 [3] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024. [4] SABOUR M R, SEYEDJALALI S H, DEZVAREH G. Comprehensive model for remediation of sandy soils contaminated with volatile organic compounds using thermal enhancement of soil vapor extraction method[J]. Water, Air & Soil Pollution, 2017, 228(7): 228-239. [5] ZHAO C, MUMFORD K G, KUEPER B H. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment[J]. Journal of Contaminant Hydrology, 2014, 164(4): 49-58. [6] STARK H, YATAVELLI R L N, THOMPSON S L, et al. Impact of thermal decomposition on thermal desorption instruments: Advantage of thermogram analysis for quantifying volatility distributions of organic species[J]. Environmental Science & Technology, 2017, 51(15): 8491-8500. [7] GORM H, STEVEN C, STEFFEN G N. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating[J]. Groundwater Monitoring & Remediation, 2010, 25(4): 92-107. [8] OBRELE D, CROWNOVER E, KLUGER M. In situ remediation of 1,4-dioxane using electrical resistance heating[J]. Remediation Journal, 2015, 25(2): 35-42. doi: 10.1002/rem.2015.25.issue-2 [9] FARAG A M, HULL R N, CLEMENTS W H, et al. Restoration of impaired ecosystems: An ounce of prevention or a pound of cure? Introduction, overview, and key messages from a SETAC-SER workshop[J]. Integrated Environmental Assessment and Management, 2016, 12(2): 247-252. doi: 10.1002/ieam.1687 [10] TRUEX M J, MACBETH T W, VERMEUL V R, et al. Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation[J]. Environmental Science & Technology, 2011, 45(12): 5346-5351. [11] 唐昊渊. 含油污泥热处置资源化试验研究[D]. 杭州: 浙江大学, 2008. [12] 徐栋梁, 崔乾民, 陈志新. 热脱附技术在首钢土壤修复生产线中的应用[J]. 工程与技术, 2017(1): 35-40. [13] FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G A. Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1): 392-400. doi: 10.1016/j.jhazmat.2010.09.046 [14] 张倩, 许端平, 董泽琴, 等. 汞污染土壤热解吸处理过程中不同形态汞的温度效应[J]. 环境科学研究, 2012, 25(8): 870-874. [15] 程亮, 张保林, 徐丽, 等. 腐殖酸热分解动力学[J]. 化工学报, 2014, 65(9): 3470-3478. doi: 10.3969/j.issn.0438-1157.2014.09.022 [16] HAN Z, GUO Z, ZHANG Y, et al. Pyrolysis characteristics of biomass impregnated with cadmium, copper and lead: Influence and distribution[J]. Waste and Biomass Valorization, 2017, 9(2/3): 1-8. [17] LU Y, LU S, HORTON R, et al. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density[J]. Soil Science Society of America Journal, 2014, 78(6): 1859. doi: 10.2136/sssaj2014.05.0218 [18] ABUHAMDEH N H, REEDER R C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter[J]. Soil Science Society of America Journal, 2000, 64(4): 1285-1290. doi: 10.2136/sssaj2000.6441285x [19] 张怡斐. 市政污泥热处理过程中主要污染物的迁移转化[D]. 上海: 上海交通大学, 2011. [20] 赵涛, 马刚平, 周宇, 等. 多环芳烃类污染土壤热脱附修复技术应用研究[J]. 环境工程, 2017, 35(11): 183-186. [21] QI Z, CHEN T, BAI S, et al. Effect of temperature and particle size on the thermal desorption of PCBs from contaminated soil[J]. Environmental Science and Pollution Research, 2014, 21(6): 4697-4704. doi: 10.1007/s11356-013-2392-4 [22] 刘新培. 热脱附技术在有机磷农药污染土壤修复过程中的应用研究[J]. 天津化工, 2017, 31(1): 57-60. doi: 10.3969/j.issn.1008-1267.2017.01.019 [23] GAO Y F, YANG H, ZHAN X H, et al. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing[J]. Environmental Science and Pollution Research, 2013, 20(3): 1482-1492. doi: 10.1007/s11356-012-0991-0 [24] 于颖, 邵子婴, 刘靓, 等. 热强化气相抽提法修复半挥发性石油烃污染土壤的影响因素[J]. 环境工程学报, 2017, 11(4): 2522-2527. doi: 10.12030/j.cjee.201510158 [25] WANG J, ZHAN X, ZHOU L, et al. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil[J]. Chemosphere, 2010, 80(8): 837-844. doi: 10.1016/j.chemosphere.2010.06.009 [26] PARKER J, KIM U, KITANIDIS P K, et al. Stochastic cost optimization of multistrategy DNAPL site remediation[J]. Groundwater Monitoring & Remediation, 2010, 30(3): 65-78. [27] JENNIFER L, POUL R, POUL C J. Assessment of groundwater quality improvements and mass discharge reductions at five in situ electrical resistance heating remediation sites[J]. Groundwater Monitoring & Remediation, 2014, 34(1): 27-28. [28] MARTIN E J, MUMFORD K G, KUEPER B H. Electrical resistance heating of clay layers in water-saturated sand[J]. Ground Water Monitoring & Remediation, 2016, 36(1): 54-61. [29] 周昱, 徐晓晶, 保嶽, 等. 电加热在土壤气相抽提(SVE)中的实验研究[J]. 科学技术与工程, 2014, 14(3): 277-280. doi: 10.3969/j.issn.1671-1815.2014.03.061 [30] FRIIS A K, HERON G, ALBRECHSEN H J, et al. Anaerobic dechlorination and redox activities after full-scale electrical resistance heating (ERH) of a TCE-contaminated aquifer[J]. Journal of Contaminant Hydrology, 2006, 88(3): 219-234. [31] BUETTNER H M, DAILY W D. Cleaning contaminated soil using electrical heating and air stripping[J]. Journal of Environmental Engineering, 1995, 121(8): 580-589. doi: 10.1061/(ASCE)0733-9372(1995)121:8(580) [32] BEYKE G, FLEMING D. In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating[J]. Remediation Journal, 2010, 15(3): 5-22. [33] POWELL T, SMITH G, STURZA J, et al. New advancements for in situ treatment using electrical resistance heating[J]. Remediation Journal, 2010, 17(2): 51-70. [34] MARTIN E J, KUPPER B H. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions[J]. Journal of Contaminant Hydrology, 2011, 126(3/4): 291-300. [35] CHOWDHURY A I A, GERHARD J I, REYNOLDS D A, et al. Low permeability zone remediation via oxidant delivered by electrokinetics and actvated by electrical resistance heating: proof of concept[J]. Environmental Science & Technology, 2017, 51(22): 13295-13303. [36] CERTINI G. Effects of fire on properties of forest soils: A review[J]. Oecologia, 2005, 143(1): 1-10. doi: 10.1007/s00442-004-1788-8 [37] JOSE A, GONZALEZ P, FRANCISCO J, et al. The effect of fire on soil organic matter: A review[J]. Environment International, 2004, 30(6): 855-870. doi: 10.1016/j.envint.2004.02.003 [38] SCHULTEN H R, LEINWEBER P. Thermal stability and composition of mineral-bound organic matter in density fractions of soil[J]. European Journal of Soil Science, 1999, 50: 237-248. doi: 10.1046/j.1365-2389.1999.00241.x [39] HAN Z, GUO Z, ZHANG Y, et al. Potential of pyrolysis for the recovery of heavy metals and bioenergy from contaminated broussonetiapapyrifera biomass[J]. Bioresources, 2018, 13(2): 2932-2944. [40] KIERSCH K, KRUSE J, REGIER T Z, et al. Temperature resolved alteration of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS[J]. Thermochimica Acta, 2012, 537: 36-43. doi: 10.1016/j.tca.2012.02.034 [41] YI Y M, PARK S, MUNSTER C, et al. Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment[J]. Water, Air & Soil Pollution, 2016, 227(4): 108-118. [42] DIXON J B, WEED S B, DINAUER R C. Minerals in soil environments[J]. Soil Science, 1989, 150(2): 675-727. [43] KETTERINGS Q M, BIGHAM J M, LAPERCHEV. Changes in soil mineralogy and texture caused by slash-and-burn fires in sumatra, indonesia[J]. Soil Science Society of America Journal, 2000, 64(3): 1108-1117. doi: 10.2136/sssaj2000.6431108x [44] PAPE A, SWITZER C, MCCOSH N, et al. Impacts of thermal and smouldering remediation on plant growth and soil ecology[J]. Geoderma, 2015, 244: 1-9. [45] 高艳菲. 六六六和滴滴涕污染场地土壤的修复[D]. 南京: 南京农业大学, 2011. [46] MA F, ZHANG Q, XU D, et al. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature[J]. Chemosphere, 2014, 117(1): 388-393. [47] TEREFE T, MARISCAL-SANCHO I, PEREGRINA F, et al. Influence of heating on various properties of six Mediterranean soils. A laboratory study[J]. Geoderma, 2008, 143(3/4): 273-280. [48] GLASS D W, JOHSON D W, BLANK R R, et al. Factors affecting mineral nitrogen transformations by soil heating[J]. Soil Science, 2008, 173(6): 387-400. doi: 10.1097/SS.0b013e318178e6dd [49] 杨乾坤, 王兴润, 朱文会, 等. 氯盐对含汞土壤热脱附的影响[J]. 环境工程学报, 2015, 9(5): 2479-2487. doi: 10.12030/j.cjee.20150573 [50] 罗婷, 孙健雄, 夏科. 土壤砷污染研究综述[J]. 环境与发展, 2017, 29(8): 11-12. [51] BONNARD M, DEVIN S, LEYVALl C, et al. The influence of thermal desorption on genotoxicity of multipolluted soil[J]. Ecotoxicology and Environmental Safety, 2010, 73(5): 951-960. [52] MENNO V D V, KEMPENAAR M, VAN M, et al. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression[J]. Ecology Letters, 2016, 19(4): 375-382. doi: 10.1111/ele.2016.19.issue-4 [53] 刘发林. 模拟火干扰对森林土壤微生物活性及氮矿化的影响[J]. 生态学报, 2017, 37(7): 2188-2196. [54] GEMA B M, BAATH E. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities[J]. Soil Biology & Biochemistry, 2009, 41(12): 2517-2526. [55] BADIA D, MARTI, C. Plant ash and heat intensity effects on chemicaland physical properties of two contrasting soils[J]. Arid Land Research and Management, 2003, 17(1): 23-41. doi: 10.1080/15324980301595 [56] 陆小成, 陈露洪, 毕树平, 等. 污染土壤电动修复及供能方式研究进展[J]. 污染防治技术, 2004, 16(3): 85-93. [57] KIM S H, HAN H Y, LEE Y J, et al. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil[J]. Science of the Total Environment, 2010, 408(16): 3162-3168. doi: 10.1016/j.scitotenv.2010.03.038 [58] 樊广萍, 仓龙, 周东美, 等. 土壤性质对铜-芘复合污染土壤电动-氧化修复的影响研究[J]. 环境科学, 2011, 32(11): 3435-3439. [59] 肖琳. 低压电场下有机肥中镉的电动去除研究[C]//中国环境科学学会, 四川大学. 2014年中国环境科学学会学术年会论文集. 成都, 2014: 6169-6173. [60] PRESTON-MAFHAM J, BODDY L, RANDERSON P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles a critique[J]. FEMS Microbiology Ecology, 2002, 42(1): 1-14. [61] 魏巍, 李凤梅, 杨雪莲, 等. 电动修复过程中电压对土壤中芘降解及微生物群落的影响[J]. 生态学杂志, 2015, 34(5): 1382-1388. [62] YI J Y, CHOI J, JEON B Y, et al. Effects of a low-voltage electric pulse charged to culture Soil on plant growth and variations of the bacterial community[J]. Agricultural Science, 2012, 3(3): 339-346. doi: 10.4236/as.2012.33038 [63] 赵庆节, 沈根祥, 罗启仕, 等. 土壤电动修复中电极切换对土壤微生物群落的影响[J]. 农业环境科学学报, 2009, 28(5): 937-940. doi: 10.3321/j.issn:1672-2043.2009.05.013