-
中国第2次湖泊现状调查显示,在138个面积大于10 km2 的湖泊中,有85.4%的湖泊水质超过了富营养化标准。其中,高于重富营养化标准的占40.1%[1-2]。富营养化已成为我国湖泊治理的重大水环境问题。无锡市梁溪河作为太湖主要入湖河流之一,其污染问题对太湖富营养化有不可忽略的贡献。因此,针对梁溪河的污染治理成为目前研究的关键。
生物脱氮是最具成本优势的脱氮技术,同时化学除磷是最简单有效的除磷技术[3]。生物脱氮方法中的生物膜技术以成本低、见效快以及环境影响小等优点广泛应用于污染河水的修复[4]。曹文平[5]采用竹丝填料做生物膜载体对微污染河水进行了处理,出水
${\rm{NH}}_4^{+} $ -N、TN和CODMn的去除率分别达到了86.67%、70.93%和48.80%,但对TP的去除效果并不明显。磁分离技术是将常规化学絮凝与磁化技术有机结合的强化混凝技术。与常规混凝技术相比,磁分离技术具有絮凝效果好、占地面积小、沉降性能好以及污泥含水率低等优点成为新兴的水处理技术[6]。我国磁分离技术早期主要应用于含有强磁性污染物的废水处理,如炼钢、轧钢废水等。随着技术与设备的不断发展,近些年来,磁分离技术在污染河水、市政污水以及工业废水等含有弱磁性或非磁性污染物的废水的处理中也取得了良好的效果[7-8]。ZHAO等[9]以Fe3O4为磁种,PAC为混凝剂,采用磁种絮凝-磁分离技术处理含磷废水,取得了98%的良好去除效果;王晓杰等[10]磁絮凝-圆盘磁分离技术处理城市受污染河水,出水COD、TP和SS的去除率分别达到了72%、91%和89%,出水水质得到明显改善。已有研究[11-13]表明,生物膜技术可以有效的去除有机物和
${\rm{NH}}_4^{+} $ -N,但对TP的去除效果并不理想。磁分离技术具有除磷效果好、占地面积小等优点,但磁分离技术仅可以去除水中小部分的非溶解性有机物和总磷,但对溶解性有机物和${\rm{NH}}_4^{+} $ -N几乎无去除效果[14-15]。因此,本研究尝试将二者有机结合起来,组建出生物膜-磁分离集成装置处理污染河水,通过优化生物膜-磁分离集成装置中生物膜系统和磁分离系统的运行参数,使其达到最佳的去污效能,以充分发挥生物膜技术脱氮和磁分离技术高效除磷的优点。本研究为梁溪河水体原位修复的应用提供了重要的技术支持,也为其他地区污染河水脱氮除磷提供了新的解决思路。
生物膜-磁分离集成装置处理污染河水工艺参数优化
Process parameter optimization of integrated biofilm-magnetic separation device for polluted river water treatment
-
摘要: 采用生物膜-磁分离集成装置对污染河水进行了污染物去除实验。对集成装置的生物膜反应区、磁分离反应区分别进行单因素实验、响应曲面实验,研究了集成装置的关键参数对污染河水处理效果的影响,探寻其最佳工艺参数。结果表明:在生物膜反应区中,水力停留时间(HRT)、曝停比和温度分别在12 h、6∶6和28 ℃的最佳条件下,集成装置对
${\rm{NH}}_4^{+} $ -N、TN和CODMn的去除率分别达到90%、60%和90%左右;在磁分离反应区中,聚合氯化铝(PAC)、聚丙烯酰胺(PAM)和磁种的投加量分别在133.02、2.96和171.66 mg·L−1的最优条件下,对生物膜处理水中TP的去除率达到了96.55%,且PAC投加量对除磷效果影响最为显著;稳定运行集成装置,出水${\rm{NH}}_4^{+} $ -N、TN、CODMn和TP的去除率分别达到91.78%、61.25%、93.85%和97.12%。本实验结果为污染河水的脱氮除磷提供了重要参考。Abstract: The contaminated river water was treated by an integrated biofilm-magnetic separation device. In the biofilm reaction zone, the single-factor experiment was carried out while in the magnetic seperation reaction zone, the response method was carried out , which disclosed the effect of the key parameters of the integrated device on the treatment of polluted water, and determined the optimum process parameters. The results showed that in the biofilm reaction zone, the removal rates of NH4+-N, TN and CODMn were 90%, 60% and 90%, respectively, at the optimal conditions such as hydraulic retention time (HRT) of 12 h, the ratio of non-aeration time to aeration time of 6∶6, and the temperature of 28 ℃. In the magnetic separation reaction zone, TP removal rate from biofilm treated water reached 96.55% at the optimal conditions such as polyaluminum chloride (PAC) dosage of 133.02 mg·L−1, polyacrylamide (PAM) dosage of 2.96 mg·L−1, and magnetic seeding dosage of 171.66 mg·L−1, of which PAC dosage had a most significant effect on phosphorus removal. During the stable running of the integrated device, the removal rates of${\rm{NH}}_4^{+} $ -N, TN, CODMn and TP in effluent reached 91.78%, 61.25%, 93.85% and 97.12%, respectively. This study provided an important theoretical basis for nitrogen and phosphorus removal from polluted river water.-
Key words:
- polluted river water /
- biofilm /
- magnetic separation /
- response surface method /
- key parameters
-
表 1 实验设计及TP去除率结果
Table 1. Experimental design and TP removal rates
实验
编号(A)PAC投
加量/(mg·L−1)(B)PAM投
加量/(mg·L−1)(C)磁种投
加量/(mg·L−1)Y/% 1 180 2 50 81.03 2 100 0.5 50 69.33 3 100 2 150 90.60 4 100 2 150 90.31 5 20 2 50 29.78 6 100 2 150 91.11 7 100 2 150 89.03 8 180 0.5 150 73.48 9 100 3.5 250 88.83 10 100 3.5 50 85.00 11 100 0.5 250 75.58 12 180 3.5 150 87.03 13 20 3.5 150 46.09 14 20 0.5 150 22.56 15 100 2 150 88.48 16 20 2 250 36.36 17 180 2 250 85.45 表 2 回归模型的方差分析结果
Table 2. Variance analysis results of regression model
项目 平方和 自由度 均方 F值 P值 显著性 模型 8 714.66 9 968.3 303.77 <0.000 1 显著 A 4 617.61 1 4 617.61 1 448.62 <0.000 1 显著 B 544.5 1 544.5 170.82 <0.000 1 显著 C 55.55 1 55.55 17.43 0.004 2 AB 24.9 1 24.9 7.81 0.026 7 AC 1.17 1 1.17 0.37 0.564 3 BC 1.46 1 1.46 0.46 0.519 7 A2 3 086.09 1 3 086.09 968.16 <0.000 1 显著 B2 129.37 1 129.37 40.58 0.000 4 C2 92.14 1 92.14 28.91 0.001 残差 22.31 7 3.19 失拟项 17.42 3 5.81 4.74 0.083 4 不显著 纯误差 4.9 4 1.22 总离差 8 736.98 16 注:R2=0.997 4, $R_{\rm{adj}}^{2} $ =0.994 2,$R_{\rm{pred}}^{2} $ =0.967 2,变异系数为2.47%,信噪比为49.254。表 3 最优实验条件磁分离反应区对TP去除率
Table 3. TP removal rate in the magnetic separation reaction zone under the optimal conditions
实验编号 A/(mg·L−1) B/(mg·L−1) C/(mg·L−1) Y/% 1 133.02 2.96 171.66 96.03 2 133.02 2.96 171.66 97.14 3 133.02 2.96 171.66 96.48 表 4 全过程运行集成装置的进出水中
${\rm{NH}}_4^{+} $ -N、TN、CODMn和TP的浓度Table 4.
${\rm{NH}}_4^{+} $ -N, TN, CODMn and TP concentration in influent and effluent of the integrated devices during the whole process running工况 ${\rm{NH}}_4^{+} $ -NTN CODMn TP 进水 6.38~9.02 8.73~13.20 21.23~30.84 2.16~3.27 出水 0.42~1.03 3.11~5.02 1.47~3.09 0.05~0.14 -
[1] 吴锋, 战金艳, 邓祥征, 等. 中国湖泊富营养化影响因素研究: 基于中国22个湖泊实证分析[J]. 生态环境学报, 2012, 21(1): 94-100. doi: 10.3969/j.issn.1674-5906.2012.01.018 [2] LU Y L, WANG R S, ZHANG Y Q, et al. Ecosystem health towards sustainability[J]. Ecosystem Health and Sustainability, 2015, 1(1): 1-15. [3] 胡家玮, 李彦娟, 张玉蓉. 磁混凝与同步硝化反硝化集成系统处理城市污水[J]. 给水排水, 2017, 53(S1): 72-77. [4] 董春枝, 吴利芳, 张永明, 等. 生物活性炭滤池修复地表水的研究[J]. 环境工程, 2014, 32(11): 5-7. [5] 曹文平. 2种填料作为生物膜载体修复微污染河水的比较[J]. 环境工程学报, 2014, 8(3): 967-971. [6] 唐纲, 杨平, 王吉白, 等. 超导磁分离过程的混絮凝影响因素[J]. 环境科学与技术, 2018, 41(7): 60-64. [7] 朱凯, 王琳. 加载混凝-磁分离水处理技术应用研究[J]. 环境工程, 2016, 34(S1): 190-192. [8] 郑利兵, 佟娟, 魏源送, 等. 磁分离技术在水处理中的研究与应用进展[J]. 环境科学学报, 2016, 36(9): 3103-3117. [9] ZHAO Y, XI B, LI Y, et al. Removal of phosphate from wastewater by using open gradient superconducting magnetic separation as pretreatment for high gradient superconducting magnetic separation[J]. Separation and Purification Technology, 2012, 86(10): 255-261. [10] 王晓杰, 董文艺, 王宏杰, 等. 磁絮凝工艺处理受污染河水研究[J]. 水处理技术, 2018, 44(5): 75-78. [11] 陈亚男. 几种填料生物膜特性与挂膜参数优化研究[D]. 杭州: 浙江大学, 2012. [12] 刘春, 肖太民, 张晶, 等. 微气泡曝气对生物膜反应器启动运行性能影响[J]. 中国环境科学, 2014, 34(12): 3093-3098. [13] 孙广垠, 刘小燕, 安恩方, 等. 低温条件下生物接触氧化反应器净化河水挂膜研究[J]. 中国给水排水, 2016, 32(3): 79-82. [14] 张鹤清, 吴振军, 吕志国, 等. 絮凝快速分离水处理技术简介及发展趋势[J]. 环境工程, 2018, 36(7): 56-61. [15] 蔡炎, 陈卫, 刘成. 应对高藻水的新型BFC磁种强磁分离净水技术研究[J]. 中国给水排水, 2017, 33(23): 44-46. [16] 李青, 成小英. 不同填料生物反应器中脱氮微生物群落比较分析[J]. 安全与环境学报, 2017, 17(6): 2360-2365. [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [18] 邱立平, 马军, 张立昕. 水力停留时间对曝气生物滤池处理效能及运行特性的影响[J]. 环境污染与防治, 2004, 26(6): 433-436. doi: 10.3969/j.issn.1001-3865.2004.06.011 [19] 张晶, 刘春, 张静, 等. 微气泡曝气方式对生物膜反应器运行性能的影响[J]. 环境工程学报, 2017, 11(4): 2177-2182. [20] ZHOU D D, DONG S S, GAO L L, et al. Distribution characteristics of extracellular polymeric substances and cells of aerobic granules cultivated in a continuous-flow airlift reactor[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(5): 942-947. [21] WANG W Y, WANG L Y, GAO X M, et al. Distribution characteristics of extracellular polymeric substance extracted from dewatere sludge treated with enzymes and thermal pressure[J]. Waste and Biomass Valorization, 2018, 9(9): 1523-1533. doi: 10.1007/s12649-017-9941-x [22] 张立秋, 吴丹, 张朝升, 等. SBBR反应器同步硝化反硝化处理微污染水源水[J]. 中国给水排水, 2016, 32(23): 61-64. [23] 彭玉梅, 李慧强, 杨平, 等. 间歇曝气MBBR深度处理含氮废水效能[J]. 四川大学学报(工程科学版), 2013, 45(S1): 133-138. [24] GABARRO J, GANIGUE R, GICH F, et al. Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration[J]. Bioresource Technology, 2012, 126(6): 283-289. [25] KIM Y M. Acclimatization of communities of ammonia oxidizing bacteria to seasonal changes in optimal conditions in a coke wastewater treatment plant[J]. Bioresource Technology, 2013, 147(8): 627-631. [26] 许雯佳, 成小英. 水力停留时间对活性炭生物转盘处理污染河水的影响[J]. 环境科学, 2018, 39(1): 202-211. doi: 10.3969/j.issn.1000-6923.2018.01.024 [27] 胡友彪, 张文涛, 黄周满. 温度对MBBR和A/O工艺中污染物去除效果比较[J]. 环境科学与技术, 2012, 35(2): 178-181. doi: 10.3969/j.issn.1003-6504.2012.02.038 [28] 李琳慧, 李旭, 许梦, 等. 冻融温度对东北黑土理化性质及土壤酶活性的影响[J]. 江苏农业科学, 2015, 43(4): 318-320. [29] 王杰, 颜智勇, 文树龙, 等. 响应面法优化Fenton试剂法处理槟榔废水[J]. 环境工程学报, 2016, 10(2): 537-543. [30] CINTRA E R, SANTOS J L, SOCOLOVSKY L M, et al. Field-induced flocculation on biocompatible magnetic colloids[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(14): 351-353. doi: 10.1016/j.jmmm.2008.02.087 [31] 李继香. 应用加载磁混凝处理微污染河水[J]. 环境工程学报, 2014, 8(7): 2901-2905. [32] ZHAO Y, LIANG W Y, LIU L J, et al. Harvesting Chlorella vulgaris by magnetic flocculation using Fe3O4 coating with polyaluminium chloride and polyacrylamide[J]. Bioresource Technology, 2015, 198(8): 789-796. [33] 宋连朋. 混凝沉淀法处理景观水体污染水的试验研究[D]. 天津: 河北工业大学, 2012. [34] 曾慧峰, 孙春宝, 王然, 等. 垃圾渗滤液的加载磁絮凝预处理工艺研究[J]. 环境工程学报, 2011, 5(10): 2303-2306. [35] 胡家玮, 李军, 于凤芹, 等. 磁絮凝法处理河水工艺条件的响应面分析[J]. 北京工业大学学报, 2013, 39(3): 459-465. [36] 侯韦竹, 丁晶, 赵庆良, 等. 响应面法优化电氧化-絮凝耦合工艺深度处理垃圾渗滤液[J]. 中国环境科学, 2017, 37(3): 948-955.