氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响

唐诗卉, 姚文清, 谭瑞琴. 氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响[J]. 环境化学, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205
引用本文: 唐诗卉, 姚文清, 谭瑞琴. 氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响[J]. 环境化学, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205
TANG Shihui, YAO Wenqing, TAN Ruiqin. Effect of oxidation degree of graphene oxide on photocatalytic activity of bismuth phosphate/graphene composite aerogel[J]. Environmental Chemistry, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205
Citation: TANG Shihui, YAO Wenqing, TAN Ruiqin. Effect of oxidation degree of graphene oxide on photocatalytic activity of bismuth phosphate/graphene composite aerogel[J]. Environmental Chemistry, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205

氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响

    通讯作者: 谭瑞琴, E-mail: tanruiqin@nbu.edu.cn
  • 基金项目:

    宁波市自然科学基金(2017A610063)和宁波大学王宽诚幸福基金资助.

Effect of oxidation degree of graphene oxide on photocatalytic activity of bismuth phosphate/graphene composite aerogel

    Corresponding author: TAN Ruiqin, tanruiqin@nbu.edu.cn
  • Fund Project: Supported by the Ningbo Natural Science Foundation (2017A610063) and K. C. Wong Magna Fund in Ningbo University.
  • 摘要: 三维网络结构磷酸铋/石墨烯复合气凝胶(BiPO4/GA)可用于有机污染物的吸附富集和原位光催化协同净化.本文采用SEM、FTIR、XRD和紫外-可见漫反射光谱(UV-Vis DRS)系统表征了氧化石墨烯(GO)及其氧化程度对BiPO4/GA复合材料的形貌、结构、光吸收和光催化性能的影响.氧化程度较高的GO呈棕色,易与BiPO4形成气凝胶,且BiPO4纳米棒均匀分散在石墨烯层上.而氧化程度较低的GO颜色较深,合成的BiPO4/GA复合材料难以保持气凝胶形状.高氧化程度BiPO4/GA复合材料对苯酚和亚甲基蓝(MB)的降解率分别约为低氧化程度BiPO4/GA的1.88倍和2.34倍.研究结果表明,通过提高复合材料制备原料GO的氧化程度,可以显著提高BiPO4/GA气凝胶的光催化活性.光催化机理为BiPO4/GA气凝胶表面吸附富集有机污染物,光生电子从BiPO4转移到石墨烯层,并通过催化剂上产生的空穴及超氧自由基(·O2-)进行有机物的有效氧化降解.
  • [1] BORMASHENKO E, MUSIN A. Revealing of water surface pollution with liquid marbles[J]. Applied Surface Science, 2009, 255:6429-6431.
    [2] SILVA J C M, SANTOS E C D, OLIVEIRA A D, et al. Adsorption of water, sulfates and chloride on arsenopyrite surface[J]. Applied Surface Science, 2018, 434:389-399.
    [3] YANG Y, LIU F C, KAWAZOE Y, et al. Adsorption of water on fluorinated graphene[J]. Journal of Physics and Chemistry of Solids, 2019, 124:54-59.
    [4] LI J D, FANG W, YU C L, et al. Ag-based semiconductor photocatalysts in environmental purification[J]. Applied Surface Science, 2015, 358:46-56.
    [5] LIU H T, GUO Y K, WANG N N, et al. Controllable synthesis and photocatalytic activity of ultrathin hematite nanosheets[J]. Journal of Alloys and Compounds, 2019, 771:343-349.
    [6] YU X, SHI J J, FENG L J, et al. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Applied Surface Science, 2017, 396:1775-1782.
    [7] LV H, LIU Y. M, TANG H B, et al. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles[J]. Applied Surface Science, 2017, 425:100-106.
    [8] PAN C S, ZHU Y F, et al. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye[J]. Environmental Science & Technology, 2010, 44:5570-5574.
    [9] LI G F, DING Y, ZHANG Y F. et al. Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances[J]. Journal of Colloid and Interface Science, 2011, 363:497-503.
    [10] DING K, YU D, WANG W, et al. Fabrication of multiple hierarchical heterojunction Ag@AgBr/BiPO4/r-GO with enhanced visible-light-driven photocatalytic activities towards dye degradation[J]. Applied Surface Science, 2018, 445:39-49.
    [11] LI J Q, YUAN H, ZHU Z F. Improved photoelectrochemical performance of Z-scheme g-C3N4/Bi2O3/BiPO4 heterostructure and degradation property[J]. Applied Surface Science, 2016, 385:34-41.
    [12] CHEN F Y, AN W J, YAO L, et al. Fabricating 3D porous PANI/TiO2-graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA[J]. Applied Surface Science, 2018, 427:123-132.
    [13] ZHU H J, LI Z K, YANG J H, et al. A novel composite hydrogel for adsorption and photocatalytic degradation of bisphenol A by visible light irradiation[J]. Chemical Engineering Journal, 2018, 334:1679-1690.
    [14] 魏永, 赵威, 姚维昊, 等. 掺S三维石墨烯气凝胶对水中铅离子的电吸附去除[J]. 环境化学, 2018, 37(10):2305-2314.

    WEI Y, ZHAO W, YAO W H, et al. Removal of lead ion in water by electrosorption with sulfur-doped three-dimensional graphene aerogel[J]. Environmental Chemistry, 2018, 37(10):2305-2314(in Chinese).

    [15] LIU X, WANG J, DONG Y M, et al. One-step synthesis of Bi2MoO6/reduced graphene oxide aerogel composite with enhanced adsorption and photocatalytic degradation performance for methylene blue[J]. Materials Science in Semiconductor Processing, 2018, 88:214-223.
    [16] HE Y R, LI S C, LI X L, et al. Graphene (rGO) hydrogel:A promising material for facile removal of uranium from aqueous solution[J]. Chemical Engineering Journal, 2018, 338:333-340.
    [17] WU Z S, WINTER A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials, 2012, 24:5130-5135.
    [18] XU Y, SHENG K, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermalprocess[J]. Acs Nano, 2010, 4:4324-4330.
    [19] YANG J J, CHEN D M, ZHU Y, et al. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation[J]. Applied Catalysis B:Environmental, 2017, 205:228-237.
    [20] HUMMERS Jr. W S, OFFEMAN R E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society, 1958, 80:1339-1339.
    [21] PAN L P, LIU S L, ODERINDE O, et al. Facile fabrication of graphene-based aerogel with rare earth metal oxide for water purification[J]. Applied Surface Science, 2018, 427:779-786.
    [22] MA Y H, WANG J J, XUN S M, et al. Ag2O/sodium alginate-reduced graphene oxide aerogel beads for efficient visible light driven photocatalysis[J]. Applied Surface Science, 2018, 430:156-164.
    [23] BANDA H, ARADILLA D, BENAYAD A, et al. One-step synthesis of highly reduced graphene hydrogels for high power supercapacitor applications[J]. Journal of Power Sources, 2017, 360:538-547.
    [24] JI F, LI J, CUI X L, et al. Hierarchical C-doped BiPO4/ZnCoAl-LDO hybrid with enhanced photocatalytic activity for organic pollutants degradation[J]. Applied Clay Science, 2018, 162:182-191.
    [25] JIANG Y Q, CHOWDHURY S, BALASUBRAMANIAN R, et al. Nitrogen-doped graphene hydrogels as potential adsorbents and photocatalysts for environmental remediation[J]. Chemical Engineering Journal, 2017, 327:751-763.
    [26] MCLAREN A, TERESA V S, LI G Q, et al. Shape and size effects of ZnO nanocrystals on photocatalytic activity[J]. Journal of the American Chemical Society, 2009, 131(35):12540-12541.
    [27] CHOWDHURY S,JIANG Y Q, MUTHUKARUPPAN S, et al. Effect of boron doping level on the photocatalytic activity of graphene aerogels[J]. Carbon, 2018, 128:237-248.
    [28] WEON S, CHOI W Y. TiO2 Nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds[J]. Environmental Science & Technology, 2016, 50(5):2556-2563.
    [29] MAO Y, SCHONEICH C, ASMUS K D, et al. Identification of organic-acids and other intermediates in oxidative-degradation of chlorinated ethanes on TiO2 surfaces en route to mineralization:A combined photocatalytic and radiation chemical study[J]. Journal of Physical Chemistry, 1991, 95(24):10080-10089.
    [30] WANG C, ZHANG H, LI F, et al. Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation[J]. Environmental Science & Technology, 2010, 44(17):6843-6848.
    [31] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews 1995, 95(1):69-96.
  • 加载中
计量
  • 文章访问数:  823
  • HTML全文浏览数:  823
  • PDF下载数:  92
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-02
唐诗卉, 姚文清, 谭瑞琴. 氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响[J]. 环境化学, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205
引用本文: 唐诗卉, 姚文清, 谭瑞琴. 氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响[J]. 环境化学, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205
TANG Shihui, YAO Wenqing, TAN Ruiqin. Effect of oxidation degree of graphene oxide on photocatalytic activity of bismuth phosphate/graphene composite aerogel[J]. Environmental Chemistry, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205
Citation: TANG Shihui, YAO Wenqing, TAN Ruiqin. Effect of oxidation degree of graphene oxide on photocatalytic activity of bismuth phosphate/graphene composite aerogel[J]. Environmental Chemistry, 2019, (7): 1656-1665. doi: 10.7524/j.issn.0254-6108.2019020205

氧化石墨烯氧化程度对磷酸铋/石墨烯复合气凝胶光催化活性的影响

    通讯作者: 谭瑞琴, E-mail: tanruiqin@nbu.edu.cn
  • 1. 宁波大学信息科学与工程学院, 宁波, 315211;
  • 2. 清华大学化学系分析中心, 北京, 100084
基金项目:

宁波市自然科学基金(2017A610063)和宁波大学王宽诚幸福基金资助.

摘要: 三维网络结构磷酸铋/石墨烯复合气凝胶(BiPO4/GA)可用于有机污染物的吸附富集和原位光催化协同净化.本文采用SEM、FTIR、XRD和紫外-可见漫反射光谱(UV-Vis DRS)系统表征了氧化石墨烯(GO)及其氧化程度对BiPO4/GA复合材料的形貌、结构、光吸收和光催化性能的影响.氧化程度较高的GO呈棕色,易与BiPO4形成气凝胶,且BiPO4纳米棒均匀分散在石墨烯层上.而氧化程度较低的GO颜色较深,合成的BiPO4/GA复合材料难以保持气凝胶形状.高氧化程度BiPO4/GA复合材料对苯酚和亚甲基蓝(MB)的降解率分别约为低氧化程度BiPO4/GA的1.88倍和2.34倍.研究结果表明,通过提高复合材料制备原料GO的氧化程度,可以显著提高BiPO4/GA气凝胶的光催化活性.光催化机理为BiPO4/GA气凝胶表面吸附富集有机污染物,光生电子从BiPO4转移到石墨烯层,并通过催化剂上产生的空穴及超氧自由基(·O2-)进行有机物的有效氧化降解.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回