非缓冲微生物燃料电池运行性能及无机碳积累

陈金丽, 吕莹, 王悦, 李秀芬, 王新华. 非缓冲微生物燃料电池运行性能及无机碳积累[J]. 环境工程学报, 2019, 13(6): 1435-1440. doi: 10.12030/j.cjee.201811101
引用本文: 陈金丽, 吕莹, 王悦, 李秀芬, 王新华. 非缓冲微生物燃料电池运行性能及无机碳积累[J]. 环境工程学报, 2019, 13(6): 1435-1440. doi: 10.12030/j.cjee.201811101
CHEN Jinli, LYU Ying, WANG Yue, LI Xiufen, WANG Xinhua. Operation performance and inorganic carbon accumulation of buffer-less microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1435-1440. doi: 10.12030/j.cjee.201811101
Citation: CHEN Jinli, LYU Ying, WANG Yue, LI Xiufen, WANG Xinhua. Operation performance and inorganic carbon accumulation of buffer-less microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1435-1440. doi: 10.12030/j.cjee.201811101

非缓冲微生物燃料电池运行性能及无机碳积累

  • 基金项目:

    江苏省自然科学基金面上项目BK20171141江苏省自然科学基金面上项目(BK20171141)

Operation performance and inorganic carbon accumulation of buffer-less microbial fuel cell

  • Fund Project:
  • 摘要: 考察了不同乙酸钠浓度下非缓冲微生物燃料电池(BLMFC)的运行性能和无机碳(IC)(HCO3-或H2CO3)积累情况。结果表明:阳极液中IC的积累浓度与乙酸钠浓度呈线性相关,在乙酸钠浓度为0.5 g·L-1和1.0 g·L-1的BLMFC体系中,IC积累浓度分别为8.02 mmol·L-1和13.60 mmol·L-1,阳极液出现酸化现象,pH降低至6.2和6.5;体系输出电压(U)与阳极液pH出现相同的先下降后上升的变化趋势,体系最大功率密度(Pmax)分别为242 mW·m-2和428 mW·m-2。当乙酸钠浓度增大到2.0 g·L-1和3.0 g·L-1时,IC积累浓度增加到30.64 mmol·L-1和42.42 mmol·L-1;乙酸盐自身的缓冲作用和体系积累的较高浓度IC可以将阳极液pH维持在7.4~8.5,输出电压稳定在350 mV左右;Pmax增大到668 mW·m-2和699 mW·m-2,可以实现自缓冲稳定运行。
  • 加载中
  • [1] QIAO Y, LI C M , BAO S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources, 2007, 170(1): 79-84.
    [2] NAM Y, KIM H W, LIM K H, et al. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells[J]. Biosensors & Bioelectronics, 2010, 25(5): 1155-1159.
    [3] YE Y, ZHU X, LOGAN B E. Effect of buffer charge on performance of air-cathodes used in microbial fuel cells[J]. Electrochimica Acta, 2016, 194: 441-447.
    [4] TANG X, LI H, DU Z. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells[J]. Journal of Power Sources, 2014, 268: 14-18.
    [5] YOU J, REN N Q, ZHAO Q L, et al. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification[J]. Biosensors & Bioelectronics, 2009, 24(12): 3698-3701.
    [6] PICIOREANU C, LOOSDRECHT M C, CURTIS T P, et al. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance[J]. Bioelectrochemistry, 2010, 78(1): 8-24.
    [7] GE Z, ZHANG F, GRIMAUD J, et al. Long-term investigation of microbial fuel cells treating primary sludge or digested sludge[J]. Bioresource Technology, 2013, 136: 509-514.
    [8] JUNG S, MRNCH M M, REGAN J M. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH[J]. Environmental Science & Technology, 2011, 45(20): 9069-9074.
    [9] FRANKS A E, NEVIN K P, JIA H, et al. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm[J]. Energy & Environmental Science, 2009, 2(1): 113-119.
    [10] LI W, SUN J, HU Y, et al. Simultaneous pH self-neutralization and bioelectricity generation in a dual bioelectrode microbial fuel cell under periodic reversion of polarity[J]. Journal of Power Sources, 2014, 268: 287-293.
    [11] YANG Y, QIN M, YANG X, et al. Enhancing hydrogen production in microbial electrolysis cells by in situ hydrogen oxidation for self-buffering pH through periodic polarity reversal[J]. Journal of Power Sources, 2017, 347: 21-28.
    [12] REN Y, CHEN J, SHI Y, et al. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell[J]. Bioresource Technology, 2017, 244: 1183-1187.
    [13] FAN Y Z, HU H Q, LIU H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms[J]. Environmental Science & Technology, 2007, 41: 8154-8158.
    [14] DONG H, YU H B, WANG X, et al. A novel structure of scalable air cathode without nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells[J]. Water Research, 2012, 46: 5777-5787.
    [15] 牟姝君, 李秀芬, 任月萍, 等. 铜离子对双室微生物燃料电池电能输出的影响研究[J]. 环境科学, 2014, 35(7): 2791-2797.
    [16] RABAEY K, BOON N, SICILIANO S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70(9): 5373-5382.
    [17] JADHAV D A, GHADGE A N, GHANGERKAR M M. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst[J]. Bioresource Technology, 2015, 191: 110-116.
    [18] RICHTER H, NEVIN K P, JIA H, et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[J]. Energy & Environmental Science, 2009, 2(5): 506-516.
    [19] URKI T, DIDONATO L N, LOVLEY D R. Toward establishing minimum requirements for extracellular electron transfer in Geobacter sulfurreducens[J]. FEMS Microbiology Letters, 2017, 364(9): 1-7.
    [20] 冯玉杰, 王鑫, 李贺, 等. 乙酸钠为基质的微生物燃料电池产电过程[J]. 哈尔滨工业大学学报, 2007, 39(12): 1890-1896.
  • 加载中
计量
  • 文章访问数:  2259
  • HTML全文浏览数:  2184
  • PDF下载数:  78
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

非缓冲微生物燃料电池运行性能及无机碳积累

  • 1. 江南大学环境与土木工程学院,江苏省厌氧生物技术重点实验室,江苏省水处理技术与材料协同创新中心,无锡 214122
基金项目:

江苏省自然科学基金面上项目BK20171141江苏省自然科学基金面上项目(BK20171141)

摘要: 考察了不同乙酸钠浓度下非缓冲微生物燃料电池(BLMFC)的运行性能和无机碳(IC)(HCO3-或H2CO3)积累情况。结果表明:阳极液中IC的积累浓度与乙酸钠浓度呈线性相关,在乙酸钠浓度为0.5 g·L-1和1.0 g·L-1的BLMFC体系中,IC积累浓度分别为8.02 mmol·L-1和13.60 mmol·L-1,阳极液出现酸化现象,pH降低至6.2和6.5;体系输出电压(U)与阳极液pH出现相同的先下降后上升的变化趋势,体系最大功率密度(Pmax)分别为242 mW·m-2和428 mW·m-2。当乙酸钠浓度增大到2.0 g·L-1和3.0 g·L-1时,IC积累浓度增加到30.64 mmol·L-1和42.42 mmol·L-1;乙酸盐自身的缓冲作用和体系积累的较高浓度IC可以将阳极液pH维持在7.4~8.5,输出电压稳定在350 mV左右;Pmax增大到668 mW·m-2和699 mW·m-2,可以实现自缓冲稳定运行。

English Abstract

参考文献 (20)

目录

/

返回文章
返回