零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃

张羽, 高春阳, 陈昌照, 宋权威, 陈宏坤, 陈家玮. 零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃[J]. 环境工程学报, 2019, 13(4): 955-962. doi: 10.12030/j.cjee.201810110
引用本文: 张羽, 高春阳, 陈昌照, 宋权威, 陈宏坤, 陈家玮. 零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃[J]. 环境工程学报, 2019, 13(4): 955-962. doi: 10.12030/j.cjee.201810110
ZHANG Yu, GAO Chunyang, CHEN Changzhao, SONG Quanwei, CHEN Hongkun, CHEN Jiawei. Degradation of PAHs in contaminated soil by zero valent iron activated sodium persulfate system[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 955-962. doi: 10.12030/j.cjee.201810110
Citation: ZHANG Yu, GAO Chunyang, CHEN Changzhao, SONG Quanwei, CHEN Hongkun, CHEN Jiawei. Degradation of PAHs in contaminated soil by zero valent iron activated sodium persulfate system[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 955-962. doi: 10.12030/j.cjee.201810110

零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃

  • 基金项目:

Degradation of PAHs in contaminated soil by zero valent iron activated sodium persulfate system

  • Fund Project:
  • 摘要: 采用Fe0活化Na2S2O8体系降解污染土壤中的PAHs,其代表化学物为NAP、PHE、FLA和BAP。分别研究了Na2S2O8的添加量、Na2S2O8与Fe0的物质的量比、水土比和温度对降解效果的影响,同时探讨了PAHs的降解动力学;并利用电子顺磁共振法(EPR)验证了Fe0活化Na2S2O8的自由基产生情况。结果表明,当1 mol·L-1的Na2S2O8添加量为10 mL、Na2S2O8与Fe0物质量之比为200∶1、水土比为2∶1、温度为60 ℃时反应36 h后,NAP、PHE、FLA、BAP的降解率分别为98.15%、78.41%、93.47%和97.64%。PAHs的降解符合一级反应动力学,且BAP的反应速率常数最大为0.030 5 h-1。EPR谱图表明,Fe0活化Na2S2O8降解PAHs污染的土壤是SO4-·和·OH共存的反应体系。该研究可为Fe0活化Na2S2O8体系降解PAHs污染土壤的机理提供一定的依据。
  • 加载中
  • [1] WILCKE W, KRAUSS M, SAFRONOV G, et al. Polycyclic aromatic hydrocarbons (PAHs) in soils of the moscow region concentrations, temporal trends, and small-scale distribution[J]. Journal of Environmental Quality, 2005, 34(5): 1581-1590.
    [2] PELUFFO M, ROSSO J A, MORELLI I S, et al. Strategies for oxidation of PAHs in aged contaminated soil by batch reactors[J]. Ecotoxicology and Environmental Safety, 2018, 151: 76-82.
    [3] CHEN C F, BINH N T, CHEN C W, et al. Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron[J]. Air Repair, 2015, 65(4): 375-383.
    [4] TSAI J H, CHEN S J, HUANG K L, et al. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted pm, particulate carbon, and PAHs[J]. Science of the Total Environment, 2014, 466-467(1): 195-202.
    [5] TSAI J H, CHEN S J, HUANG K L, et al. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends[J]. Journal of Hazardous Materials, 2010, 179(1): 237-243.
    [6] 施维林, 沈秋悦, 王儒, 等. 不同化学氧化剂对多环芳烃污染土壤修复效果研究[J]. 苏州科技大学学报(自然科学版), 2017, 34(1): 61-66.
    [7] XU X, HU H, KEARNEY G D, et al. Studying the effects of polycyclic aromatic hydrocarbons on peripheral arterial disease in the united states[J]. Science of the Total Environment, 2013, 461-462(7): 341-347.
    [8] YANG S, GOU Y, SONG Y, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a highly contaminated aged soil using nitrate and soil microbes[J]. Environmental Earth Sciences, 2018, 77(12): 432-443.
    [9] PARRISH Z D, WHITE J C, ISLEYEN M, et al. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species[J]. Chemosphere, 2006, 64(4): 609-618.
    [10] 计敏惠, 邹华, 杜玮, 等. 表面活性剂增效电动技术修复多环芳烃污染土壤[J]. 环境工程学报, 2016, 10(7): 3871-3876.
    [11] MA W F, GUO H, YE J D, et al. Removal efficiency and distribution characteristics of PAHs in coking plant contaminated soils by in situ chemical oxidation remediation[J]. Advanced Materials Research, 2013, 690-693: 1490-1494.
    [12] RANC B, FAURE P, CROZE V, et al. Selection of oxidant doses for in situ, chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2016, 312: 280-297.
    [13] 潘栋宇, 侯梅芳, 刘超男, 等. 多环芳烃污染土壤化学修复技术的研究进展[J]. 安全与环境工程, 2018, 25(3): 54-66.
    [14] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science & Technology, 2010, 40(1): 55-91.
    [15] LIANG C J, BRUELL C J, MARLEY M C, et al. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries[J]. Journal of Soil Contamination, 2003, 12(2): 207-228.
    [16] CHEN C F, BINH N T, CHEN C W, et al. Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron[J]. Air Repair, 2015, 65(4): 375-383.
    [17] SUPAKA N, JUNTONGJIN K, DAMRONGLERD S, et al. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system[J]. Chemical Engineering Journal, 2004, 99(2): 169-176.
    [18] YEN C H, CHEN K F, KAO C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2097-2102.
    [19] SRA K S, THOMSON N R, BARKER J F. Persulfate injection into a gasoline source zone[J]. Journal of Contaminant Hydrology, 2013, 150(5): 35-44.
    [20] 孙燕英, 陈鸿汉, 何炜, 等. 土壤中石油类污染物的化学氧化去除研究[J]. 土壤, 2008, 40(1): 130-134.
    [21] USMAN M, FAURE P, RUBY C, et al. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils[J]. Chemosphere, 2012, 87(3): 234-240.
    [22] 赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3): 849-856.
    [23] LIANG C, HUANG C F, CHEN Y J. Potential for activated persulfate degradation of BTEX contamination[J]. Water Research, 2008, 42(15): 4091-4100.
    [24] KILLIAN P F, BRUELL C J, MARLEY M C, et al. Iron (II) activated persulfate oxidation of MGP contaminated soil[J]. Journal of Soil Contamination, 2007, 16(6): 523-537.
    [25] DO S H, KWON Y J, KONG S H. Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand[J]. Journal of Hazardous Materials, 2010, 182(1): 933-936.
    [26] 陈辉,肖杰,万正茂,等. Fe2+活化过硫酸盐氧化降解水和泥浆中PAHs(芘)的研究[J]. 工业安全与环保, 2017, 43(2):1-10.
    [27] PRZEMYSLAW D, LEONIDAS P, ALLA A, et al. Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water[J]. Environmental Science & Technology, 2012, 46(16): 89-91.
    [28] FURUKAWA Y, KIM J W, WATKINS J, et al. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron[J]. Environmental Science & Technology, 2002, 36(24): 5469-5475.
    [29] GOI A, TRAPIDO M, KULIK N, et al. Ozonation and Fenton treatment for remediation of diesel fuel contaminated soil[J]. Ozone Science & Engineering, 2006, 28(1): 37-46.
    [30] OLMEZHANCI T, ARSLANALATON I, GENC B. Bisphenol a treatment by the hot persulfate process: Oxidation products and acute toxicity[J]. Journal of Hazardous Materials, 2013, 263: 283-290.
    [31] BROWN G S, BARTON L L, THOMSON B M. Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons[J]. Waste Management, 2003, 23(8): 737-740.
    [32] OH S Y, SHIN D S. Treatment of diesel-contaminated soil by Fenton and persulfate oxidation with zero-valent iron[J]. Soil and Sediment Contamination, 2014, 23(2): 180-193.
    [33] ZHAO J, ZHANG Y, XIE Q, et al. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature[J]. Separation and Purification Technology, 2010, 71(3): 302-307.
    [34] 许海波. 零价铁还原与化学氧化剂氧化联合降解土壤中硝基氯苯的研究[D]. 南京:南京农业大学, 2014.
    [35] 李永涛, 罗进, 岳东. 热活化过硫酸盐氧化修复柴油污染土壤[J]. 环境污染与防治, 2017, 39(10): 1143-1146.
    [36] PELUFFO M, PARODO F, SANTOS A, et al. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil[J]. Science of the Total Environment, 2016, 563-564: 649-656.
    [37] 赵进英. 零价铁/过硫酸钠体系产生硫酸根自由基氧化降解氯酚的研究[D]. 大连:大连理工大学, 2010.
    [38] 朱乐. 零价锌粉(Zn0)活化过硫酸钠(PS)降解硝基苯和四氯化碳的研究[D]. 南京:南京农业大学, 2015.
  • 加载中
计量
  • 文章访问数:  2947
  • HTML全文浏览数:  2795
  • PDF下载数:  198
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃

  • 1. 中国石油安全环保技术研究院,石油石化污染物控制与处理国家重点实验室,北京 102206
  • 2. 中国地质大学北京地球科学与资源学院,北京 100083
  • 3. 中国地质科学院水文地质环境地质研究所,石家庄 050061
基金项目:

摘要: 采用Fe0活化Na2S2O8体系降解污染土壤中的PAHs,其代表化学物为NAP、PHE、FLA和BAP。分别研究了Na2S2O8的添加量、Na2S2O8与Fe0的物质的量比、水土比和温度对降解效果的影响,同时探讨了PAHs的降解动力学;并利用电子顺磁共振法(EPR)验证了Fe0活化Na2S2O8的自由基产生情况。结果表明,当1 mol·L-1的Na2S2O8添加量为10 mL、Na2S2O8与Fe0物质量之比为200∶1、水土比为2∶1、温度为60 ℃时反应36 h后,NAP、PHE、FLA、BAP的降解率分别为98.15%、78.41%、93.47%和97.64%。PAHs的降解符合一级反应动力学,且BAP的反应速率常数最大为0.030 5 h-1。EPR谱图表明,Fe0活化Na2S2O8降解PAHs污染的土壤是SO4-·和·OH共存的反应体系。该研究可为Fe0活化Na2S2O8体系降解PAHs污染土壤的机理提供一定的依据。

English Abstract

参考文献 (38)

目录

/

返回文章
返回