紫外活化过硫酸钠降解水中三唑酮的效能

周明毅, 魏琛, 盛贵尚, 陆天友. 紫外活化过硫酸钠降解水中三唑酮的效能[J]. 环境工程学报, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017
引用本文: 周明毅, 魏琛, 盛贵尚, 陆天友. 紫外活化过硫酸钠降解水中三唑酮的效能[J]. 环境工程学报, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017
ZHOU Mingyi, WEI Chen, SHENG Guishang, LU Tianyou. Degradation of triadimefon in water by UV irradiation-activated sodium persulfate process[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017
Citation: ZHOU Mingyi, WEI Chen, SHENG Guishang, LU Tianyou. Degradation of triadimefon in water by UV irradiation-activated sodium persulfate process[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017

紫外活化过硫酸钠降解水中三唑酮的效能

  • 基金项目:

    贵州省土木工程一流学科建设项目QYNYL[2017]0013

    贵州省科技计划项目黔科合SY字[2014]3045号,黔科合基础[2018]1125号

    贵州大学引进人才项目贵大人基合字[2015]18号贵州省土木工程一流学科建设项目(QYNYL[2017]0013)

    贵州省科技计划项目(黔科合SY字[2014]3045号,黔科合基础[2018]1125号)

    贵州大学引进人才项目(贵大人基合字[2015]18号)

Degradation of triadimefon in water by UV irradiation-activated sodium persulfate process

  • Fund Project:
  • 摘要: 针对常规水处理工艺难以去除原水中低浓度有机氯农药的问题,采用新型高级氧化技术——紫外(UV)活化过硫酸钠(PS)去除水中有机氯农药三唑酮(triadimefon,TDF),分别研究了TDF初始浓度、PS浓度、初始pH、氯离子浓度以及腐殖酸(HA)浓度对TDF降解效果的影响。结果表明:随着TDF浓度的增加,其去除率逐渐降低;PS浓度从100 μmol·L-1增到250 μmol·L-1,TDF去除率可以提高6.83%;初始pH为5时,TDF的去除率最大;氯离子的存在会抑制TDF降解;存在HA时会降低TDF去除效果。当TDF浓度为200 μg·L-1、PS投加量为250 μmol·L-1、pH为5、温度为(25±2) ℃和反应时间为600 s的反应条件下,TDF的去除率达到99.83%。相比于单独采用UV辐照和PS氧化技术,UV/PS技术对TDF的去除率分别提高了64.2%和86.22%。TDF的降解机制是紫外直接光解和以硫酸根自由基(SO4?-)为主的自由基氧化的共同作用。
  • 加载中
  • [1] FENG J L, ZHAI M X, LIU Q, et al. Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River, East China[J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2252-2259.
    [2] LI M, LI S Y, YAO T T, et al. Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles[J]. Aquatic Toxicology, 2016, 177: 190-197.
    [3] LIU S Y, CHANG J, ZHAO Y, et al. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon[J]. Environmental Toxicology and Pharmacology, 2011, 32(3): 472-477.
    [4] WAN Y, HU J Y, LIU J L, et al. Fate of DDT-related compounds in Bohai Bay and its adjacent Haihe Basin, North China[J]. Marine Pollution Bulletin, 2005, 50(4): 439-445.
    [5] ORMAD M P, MIGUEL N, CLAVER A. Pesticides removal in the process of drinking water production[J]. Chemosphere, 2008, 71(1): 97-106.
    [6] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284.
    [7] HUANG K C, ZHAO Z Q, HOAG G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560.
    [8] LONG A, LEI Y, ZHANG H. Degradation of toluene by a selective ferrous ion activated persulfate oxidation process[J]. Industrial & Engineering Chemistry Research, 2014, 53 (3): 1033-1039.
    [9] 尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(Ⅱ)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J]. 环境科学研究, 2017, 30(7): 1105-1111.
    [10] 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术[J]. 化学进展, 2008, 20(9): 1433-1438.
    [11] 栾海彬, 杨立翔, 鲁帅, 等. 热活化过硫酸盐对双酚A的降解及其机理[J]. 环境工程学报, 2016, 10(5): 2459-2464.
    [12] 罗从伟. 紫外/过硫酸盐高级氧化降解典型有机微污染物效能及作用机制[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [13] JI Y, DONG C, KONG D, et al. Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal, 2015, 263: 45-54.
    [14] 葛勇建, 蔡显威, 林翰, 等. 碱活化过一硫酸盐降解水中环丙沙星[J]. 环境科学, 2017, 38(12): 5116-5123.
    [15] 高乃云, 胡栩豪, 邓靖, 等. 紫外激活过硫酸盐降解水中卡马西平研究[J]. 华中科技大学学报(自然科学版), 2013, 41(12): 117-122.
    [16] 刘毅华, 杨仁斌, 郭正元, 等. 三唑酮在水中的光化学降解及其影响因素[J]. 农村生态环境, 2005, 21(4): 68-71.
    [17] 孙晓春. 两种农药在海水中的光化学降解研究[D]. 青岛: 中国海洋大学, 2008.
    [18] 李绍峰, 石冶, 崔崇威. 臭氧氧化降解三唑酮的试验[J]. 环境科学学报, 2008, 28(7): 1381-1388.
    [19] SALAZAR R, URETA-ZA?ARTU M S. Mineralization of triadimefon fungicide in water by electro-Fenton and photo electro-Fenton [J]. Water Air Soil Pollution, 2012, 223(7): 4199-4207.
    [20] CASADO J, SANTILLO D, JOHNSTON P. Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-orbitrap high resolution tandem mass spectrometry[J]. Analytica Chimica Acta, 2018, 1024(18): 1-17.
    [21] WANG Q F, SHAO Y S, GAO N Y, et al. Degradation kinetics and mechanism of 2, 4-di-tert-butylphenol with UV/persulfate [J]. Chemical Engineering Journal, 2016, 304: 201-208.
    [22] LI L X, YOSHIHIRO A, YUKIKO N, et al. An HPLC assay of hydroxyl radicals by the hydroxylationreaction of terephthalic acid[J]. Biomedical Chromatography, 2004, 18(7): 470-474.
    [23] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284.
    [24] YU X Y, BAO Z C, JOHN R B. Free radical reactions involving Cl·, Cl2-·, and SO4?- in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl- [J]. Journal of Physical Chemistry A, 2003, 35(24): 295-308.
    [25] KLANING U K, SEHESTED K, APPELMAN E H. Laser flash photolysis and pulse radiolysis of aqueous solutions of the fluoroxysulfate ion, SO4F-[J] Inorganic Chemistry, 1991, 30(18): 3582-3584.
    [26] SALARI D, NIAEI A, ABEr S, et al. The photooxidative destruction of C. I. Basic Yellow 2 using UV/S2O82- process in a rectangular continuous photoreactor[J]. Journal of Hazardous Materials, 2008, 166(1): 61-66.
    [27] 李永涛, 岳东, 熊鑫, 等. 零价铁活化过硫酸钠降解含油废水[J]. 环境工程学报, 2016, 10(8): 4239-4243.
    [28] MCCALLUM J E B, MADISON S A, DEPINTO R T, et al. Analytical studies on the oxidative degradation of the reactive dye uniblue A [J]. Environmental Science and Technology, 2000, 34(24): 5157-5164.
    [29] LIANG C J, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures [J]. Chemosphere, 2006, 66(1): 106-113.
    [30] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886.
    [31] MORA V C, ROSSO J A, ROUX G L, et al. Thermally activated peroxydisulfate in the presence of additives: A clean method for the degradation of pollutants[J]. Chemosphere, 2009, 75(10): 1405-1409.
    [32] 姚宁波, 李学艳, 李青松, 等. Fe(Ⅱ)活化过硫酸钠去除水中三氯生[J]. 环境工程学报, 2016, 10(9): 4737-4744.
    [33] SILVA J P, FERREIRA L F, SILVA A P. Aqueous photochemistry of pesticides triadimefon and triadimenol [J]. Journal of Photochemistry & Photobiology A: Chemistry, 2003, 154(2): 293-298.
  • 加载中
计量
  • 文章访问数:  4268
  • HTML全文浏览数:  4053
  • PDF下载数:  258
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

紫外活化过硫酸钠降解水中三唑酮的效能

  • 1. 贵州大学土木工程学院,贵阳 550025
基金项目:

贵州省土木工程一流学科建设项目QYNYL[2017]0013

贵州省科技计划项目黔科合SY字[2014]3045号,黔科合基础[2018]1125号

贵州大学引进人才项目贵大人基合字[2015]18号贵州省土木工程一流学科建设项目(QYNYL[2017]0013)

贵州省科技计划项目(黔科合SY字[2014]3045号,黔科合基础[2018]1125号)

贵州大学引进人才项目(贵大人基合字[2015]18号)

摘要: 针对常规水处理工艺难以去除原水中低浓度有机氯农药的问题,采用新型高级氧化技术——紫外(UV)活化过硫酸钠(PS)去除水中有机氯农药三唑酮(triadimefon,TDF),分别研究了TDF初始浓度、PS浓度、初始pH、氯离子浓度以及腐殖酸(HA)浓度对TDF降解效果的影响。结果表明:随着TDF浓度的增加,其去除率逐渐降低;PS浓度从100 μmol·L-1增到250 μmol·L-1,TDF去除率可以提高6.83%;初始pH为5时,TDF的去除率最大;氯离子的存在会抑制TDF降解;存在HA时会降低TDF去除效果。当TDF浓度为200 μg·L-1、PS投加量为250 μmol·L-1、pH为5、温度为(25±2) ℃和反应时间为600 s的反应条件下,TDF的去除率达到99.83%。相比于单独采用UV辐照和PS氧化技术,UV/PS技术对TDF的去除率分别提高了64.2%和86.22%。TDF的降解机制是紫外直接光解和以硫酸根自由基(SO4?-)为主的自由基氧化的共同作用。

English Abstract

参考文献 (33)

目录

/

返回文章
返回