电絮凝法去除水中四环素的效能及机理

高雪, 吕建波, 苏润西, 郝雅荣, 杨金梅, 孙力平. 电絮凝法去除水中四环素的效能及机理[J]. 环境工程学报, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
引用本文: 高雪, 吕建波, 苏润西, 郝雅荣, 杨金梅, 孙力平. 电絮凝法去除水中四环素的效能及机理[J]. 环境工程学报, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
GAO Xue, LYU Jianbo, SU Runxi, HAO Yarong, YANG Jingmei, SUN Liping. Performance and mechanism of electrocoagulation process for tetracycline removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
Citation: GAO Xue, LYU Jianbo, SU Runxi, HAO Yarong, YANG Jingmei, SUN Liping. Performance and mechanism of electrocoagulation process for tetracycline removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006

电絮凝法去除水中四环素的效能及机理

  • 基金项目:

    国家自然科学基金资助项目51108298,5148292

    天津市自然科学基金资助项目12JCYBJC14800国家自然科学基金资助项目(51108298,5148292)

    天津市自然科学基金资助项目(12JCYBJC14800)

Performance and mechanism of electrocoagulation process for tetracycline removal from water

  • Fund Project:
  • 摘要: 为了探讨电絮凝法去除水中四环素的效能及机理,分别研究了电极材料、电流强度、电导率和四环素初始浓度等参数对电絮凝去除四环素的影响;并通过氧化性能评估实验、UV-vis光谱分析、X射线衍射(XRD)等方法探究电絮凝去除四环素的性能。结果表明:使用铁电极(面积300 mm × 80 mm,厚2 mm),对初始浓度0.05 mmol·L-1的四环素模拟废水进行处理,在电流强度为0.3 A、电导率为1 000 μS·cm-1、电解15 min时,四环素和总有机碳(TOC)的去除率分别可达99.6%和79.8%,并且约41.9%的四环素通过氧化降解作用从水中被去除。使用铁电极电絮凝技术能够快速高效地去除四环素,具有高氧化率、低成本的特点。
  • 加载中
  • [1] PULICHARLA R, BRAR S K, DROGUI P, et al. Removal processes of antibiotics in waters and wastewaters: Crucial link to physical-chemical properties and degradation[J]. Journal of Hazardous Toxic & Radioactive Waste, 2015, 19(4): 04015008.
    [2] 杨晓芳, 杨涛, 王莹, 等. 四环素类抗生素污染现状及其环境行为研究进展[J]. 环境工程, 2014, 32(2): 123-127.
    [3] CENGI?Z M, BALCI?OGLU I, ORUC H H. Detection of oxytetracycline and chlortetracycline residues in agricultural fields in Turkey[J]. Journal of Biological & Environmental Sciences, 2010, 4(10): 23-27.
    [4] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
    [5] SIMAZAKI D, KUBOTA R, SUZUKI T, et al. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health[J]. Water Research, 2015, 76: 187-200.
    [6] ORGANIZATION W H. Antimicrobial resistance: Global report on surveillance[J]. Australasian Medical Journal, 2014, 7(5): 238-239.
    [7] MA W L, QI R, ZHANG Y, et al. Performance of a successive hydrolysis, denitrification and nitrification system for simultaneous removal of COD and nitrogen from terramycin production wastewater[J]. Biochemical Engineering Journal, 2009, 45(1): 30-34.
    [8] MA W , YANG M , WANG J , et al. Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification[J]. Environmental Technology Letters, 2002, 23(6): 685-694.
    [9] 张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 123-127.
    [10] KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1): 1-13.
    [11] OTURAN N, WU J, ZHANG H, et al. Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials[J]. Applied Catalysis B: Environmental, 2013, 140-141: 92-97.
    [12] ZHENG Y, HUANG M H, CHEN L, et al. Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes[J]. Desalination, 2015, 359: 113-122.
    [13] SIRéS I, BRILLAS E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review[J]. Environment International, 2012, 40: 212-229.
    [14] 李喆钦, 周庆, 李爱民. 水体中四环素类抗生素的去除技术研究进展[J]. 环境保护科学, 2012, 38(4): 15-18.
    [15] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
    [16] OUAISSA Y A, CHABANI M, AMRANE A, et al. Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 177-184.
    [17] BARAN W, ADAMEK E, JAJKO M, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere, 2017, 194: 381-389.
    [18] WANG H, YAO H, SUN P Z, et al. Transformation of tetracycline antibiotics and Fe(II)/(III) species induced by their complexation[J]. Environmental Science & Technology, 2015, 50(1): 145-153.
    [19] WANG H, YAO H, SUN P, et al. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation[J]. Chemosphere, 2015 , 119(2): 1255-1261.
    [20] 杨旭, 王建华. 四环素类金属离子配合物应用研究进展[J]. 食品工业科技, 2016, 37(11): 362-366.
    [21] DANESHVAR N, OLADEGARAGOZE A, DJAFARZADEH N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters[J]. Journal of Hazardous Materials, 2006, 129(1): 116-122.
    [22] 张峰振, 杨波, 张鸿, 等. 电絮凝法进行废水处理的研究进展[J]. 工业水处理, 2012, 32(12): 11-16.
    [23] ZAIED M, BELLAKHAL N. Electrocoagulation treatment of black liquor from paper industry[J]. Journal of Hazardous Materials, 2009, 163(2/3): 995-1000.
    [24] HEIDMANN I, CALMANO W. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation[J]. Journal of Hazardous Materials, 2008, 152(3): 934-941.
    [25] LINARES C F, MARíA B. Interaction between antimicrobial drugs and antacid based on cancrinite-type zeolite[J]. Microporous & Mesoporous Materials, 2006, 96(1): 141-148.
    [26] 文美琼, 李露. 四环素-铁(Ⅲ)配合物与DNA相互作用的吸收光谱研究[J]. 光谱实验室, 2008(2): 226-228.
    [27] 熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566.
    [28] 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 14-22.
    [29] 付丹丹. 腐殖酸对A-羟基氧化铁、Γ-羟基氧化铁吸附砷的影响研究[D]. 上海: 华东师范大学, 2017.
    [30] 孙丽华, 俞天敏, 齐晓璐, 等. 原位生成羟基氧化铁凝聚吸附除磷影响因素研究[J]. 给水排水, 2015(7): 128-132.
  • 加载中
计量
  • 文章访问数:  4893
  • HTML全文浏览数:  4688
  • PDF下载数:  202
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

电絮凝法去除水中四环素的效能及机理

  • 1. 天津城建大学环境与市政工程学院,天津 300384
  • 2. 烟台大学土木工程学院,烟台 264005
基金项目:

国家自然科学基金资助项目51108298,5148292

天津市自然科学基金资助项目12JCYBJC14800国家自然科学基金资助项目(51108298,5148292)

天津市自然科学基金资助项目(12JCYBJC14800)

摘要: 为了探讨电絮凝法去除水中四环素的效能及机理,分别研究了电极材料、电流强度、电导率和四环素初始浓度等参数对电絮凝去除四环素的影响;并通过氧化性能评估实验、UV-vis光谱分析、X射线衍射(XRD)等方法探究电絮凝去除四环素的性能。结果表明:使用铁电极(面积300 mm × 80 mm,厚2 mm),对初始浓度0.05 mmol·L-1的四环素模拟废水进行处理,在电流强度为0.3 A、电导率为1 000 μS·cm-1、电解15 min时,四环素和总有机碳(TOC)的去除率分别可达99.6%和79.8%,并且约41.9%的四环素通过氧化降解作用从水中被去除。使用铁电极电絮凝技术能够快速高效地去除四环素,具有高氧化率、低成本的特点。

English Abstract

参考文献 (30)

目录

/

返回文章
返回