短程硝化在垃圾渗滤液处理工程中的应用

胡云飞, 马勤, 王洁屏. 短程硝化在垃圾渗滤液处理工程中的应用[J]. 环境工程学报, 2019, 13(6): 1463-1472. doi: 10.12030/j.cjee.201809159
引用本文: 胡云飞, 马勤, 王洁屏. 短程硝化在垃圾渗滤液处理工程中的应用[J]. 环境工程学报, 2019, 13(6): 1463-1472. doi: 10.12030/j.cjee.201809159
HU Yunfei, MA Qin, WANG Jieping. Application of shortcut nitrification in landfill leachate treatment engineering[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1463-1472. doi: 10.12030/j.cjee.201809159
Citation: HU Yunfei, MA Qin, WANG Jieping. Application of shortcut nitrification in landfill leachate treatment engineering[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1463-1472. doi: 10.12030/j.cjee.201809159

短程硝化在垃圾渗滤液处理工程中的应用

  • 基金项目:

    浙江农林大学中长期发展规划专项资助项目2013CB02浙江农林大学中长期发展规划专项资助项目(2013CB02)

Application of shortcut nitrification in landfill leachate treatment engineering

  • Fund Project:
  • 摘要: 针对垃圾填埋场渗滤液生物脱氮高耗能的问题,通过对A/O/N工艺处理垃圾渗滤液进行短程硝化反硝化调试,对溶解氧(DO)、污泥浓度(MLSS)、污泥龄(SRT)、混合液回流比、pH、碱度进行定性定量分析,研究了不同条件下垃圾渗滤液生物处理阶段COD、氨氮及总氮去除效果,探讨了影响亚硝酸盐氮积累的因素。结果表明,好氧池低溶解氧能成功启动短程硝化,垃圾渗滤液稳定实现短程硝化反硝化脱氮。运行条件为:O反应器DO浓度0.5~0.8 mg·L-1,N反应器DO浓度1.5~2.2 mg·L-1,MLSS 3 500~4 500 mg·L-1,污泥龄9~13 d,混合液回流比1 100%,N反应器pH 7.6~8.2,N反应器碱度1.1 g·L-1。短程硝化调试后,硝化阶段亚硝化率稳定在85%以上,COD、氨氮及总氮去除率分别达95%、98.6%、94.2%以上,节省30%碳源量和20%曝气量。
  • 加载中
  • [1] EHSAN M, DIRK W, GRAHAN C. Municipal landfill leachate characteristics and feasibility of retrofitting existing treatment systems with deammonification: A full scale survey[J]. Journal of Environmental Management, 2017, 187: 354-364.
    [2] 陈雷, 贺磊, 吴立群, 等. 垃圾渗滤液的处理现状及发展方向[J]. 环境工程, 2016, 34(S1): 295-298.
    [3] YU R F, LIAW S L, CHANG C N, et al. Applying real-time control to enhance the performance of nitrogen removal in the continuous-flow SBR system[J] . Water Science and Technology,1998, 38(3): 271-280.
    [4] MUNOZ C, ROJAS D, CANDIA O, et al. Supervisory control system to enhance partial nitrification in an activated sludge reactor[J]. Chemical Engineering Journal, 2009, 145(3): 453-460.
    [5] 张少辉, 康淑琴. 低C/N值下短程硝化反应器的启动及影响因素[J]. 中国给水排水, 2010, 26(11): 96-99.
    [6] FENG Y, TSENG S, HSIS T, et al. Partial nitrification of ammonium-rich wastewater as pretreatment for anaerobic ammonium oxidation(Anammox) using membrane aeration bioreactor[J]. Biomaterials Science, 2007, 104(3): 182-187.
    [7] 尹文俊, 周伟伟, 王凯, 等. 垃圾渗滤液物化与生化处理工艺技术现状[J]. 环境工程, 2018, 36(2): 83-87.
    [8] 马春, 边喜龙. 实用水质检验技术[M]. 北京: 化学工业出版社, 2011.
    [9] 奚旦立, 孙裕生. 环境监测[M]. 4版. 北京: 高等教育出版社, 2010.
    [10] 王社平, 高俊发. 污水处理厂工艺设计手册[M]. 2版. 北京: 化学工业出版社, 2011.
    [11] 周丹, 周雹. 污水脱氮工艺中外部碳源投加量简易计算方法[J]. 给水排水, 2011, 37(11): 38-41.
    [12] WANG Y, PELKONEN M, KAILA J. Strategies to enhance the biological nitrogen removal of high-strength ammonium and low C/N landfill leachate with the SBR process[J]. Environmental Technology, 2012, 33(5): 579-588.
    [13] RUIZ G, JEISON D, CHAMY R. Nitrification with high nitrite accumulation for the treatment of waste water with high ammonia concentration[J]. Water Research, 2003, 37(6): 1371-1377.
    [14] 吴莉娜, 徐莹莹, 史枭, 等. 短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液[J]. 环境科学研究, 2016, 29(4): 587-593.
    [15] 张朝升, 章文菁, 方茜, 等. DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J]. 环境工程学报, 2009, 3(3): 413-416.
    [16] 周群英, 王士芬. 环境工程微生物学[M]. 4版. 北京: 高等教育出版社, 2005.
    [17] 赵晴, 梁俊宇, 吕慧, 等. AO-MBR工艺短程硝化反硝化处理垃圾渗滤液中试研究[J]. 北京工业大学学报, 2018, 44(1): 45-49.
    [18] HANIL H, UBEYDE I, CUMALI K. Joint treatment of landfill leachate with municipal wastewater by submerged membrane bioreactor[J]. Water Science and Technology, 2009, 60(12): 3121-3127.
    [19] KAWASAKI K, MARUOKA S, KATAGAMI R, et al. Effect of initial MLSS on operation of submerged membrane activated sludge process[J]. Desalination, 2011, 281(20): 334-339.
    [20] 罗晓, 郑向阳, 赵丛丛, 等. A/O工艺中污泥浓度对微生物群落结构的影响[J]. 中国环境科学, 2018, 38(1): 275-283.
    [21] 史一欣, 倪晋仁. 晚期垃圾渗滤液短程硝化影响因素研究[J]. 环境工程学报, 2007, 1(7): 110-114.
    [22] 刘牡, 彭永臻, 宋燕杰, 等. 回流比对单级UASB-A/O处理晚期垃圾渗滤液短程脱氮的影响[J]. 化工学报, 2011, 62(6): 1675-1681.
    [23] HELLINGA C, SCHELLEN A A J C, MULDER J W. The SHARON process: An innovative method for nitrogen removal from ammonium-rich wastewater[J]. Water Technology, 1998, 37(9): 135-142.
    [24] RUIZE G, JEISON D, RUBILAR O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresource Technology, 2006, 97(2): 330-335.
    [25] 韩晓宇, 张树军, 甘一萍, 等. 以FA与FNA为控制因子的短程硝化启动与维持[J]. 环境科学, 2009, 30(3): 809-814.
    [26] 尚会来, 彭永臻, 张静蓉, 等. 温度对短程硝化反硝化的影响[J]. 环境科学学报, 2009, 29(3): 516-520.
  • 加载中
计量
  • 文章访问数:  3269
  • HTML全文浏览数:  3194
  • PDF下载数:  107
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

短程硝化在垃圾渗滤液处理工程中的应用

  • 1. 浙江农林大学环境与资源学院,杭州 311300
  • 2. 杭州市临安区环境检测站,杭州 311300
基金项目:

浙江农林大学中长期发展规划专项资助项目2013CB02浙江农林大学中长期发展规划专项资助项目(2013CB02)

摘要: 针对垃圾填埋场渗滤液生物脱氮高耗能的问题,通过对A/O/N工艺处理垃圾渗滤液进行短程硝化反硝化调试,对溶解氧(DO)、污泥浓度(MLSS)、污泥龄(SRT)、混合液回流比、pH、碱度进行定性定量分析,研究了不同条件下垃圾渗滤液生物处理阶段COD、氨氮及总氮去除效果,探讨了影响亚硝酸盐氮积累的因素。结果表明,好氧池低溶解氧能成功启动短程硝化,垃圾渗滤液稳定实现短程硝化反硝化脱氮。运行条件为:O反应器DO浓度0.5~0.8 mg·L-1,N反应器DO浓度1.5~2.2 mg·L-1,MLSS 3 500~4 500 mg·L-1,污泥龄9~13 d,混合液回流比1 100%,N反应器pH 7.6~8.2,N反应器碱度1.1 g·L-1。短程硝化调试后,硝化阶段亚硝化率稳定在85%以上,COD、氨氮及总氮去除率分别达95%、98.6%、94.2%以上,节省30%碳源量和20%曝气量。

English Abstract

参考文献 (26)

目录

/

返回文章
返回