电压强度对污泥电脱水效能及滤液有机物特征的影响

鲁子烨, 张堯, 徐硕, 杨帆. 电压强度对污泥电脱水效能及滤液有机物特征的影响[J]. 环境工程学报, 2018, 12(12): 3333-3340. doi: 10.12030/j.cjee.201809016
引用本文: 鲁子烨, 张堯, 徐硕, 杨帆. 电压强度对污泥电脱水效能及滤液有机物特征的影响[J]. 环境工程学报, 2018, 12(12): 3333-3340. doi: 10.12030/j.cjee.201809016
LU Ziye, ZHANG Yao, XU Shuo, YANG Fan. Effect of voltage intensity on sludge electro-dewatering efficiency and characteristics of organic matters in filtrate[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3333-3340. doi: 10.12030/j.cjee.201809016
Citation: LU Ziye, ZHANG Yao, XU Shuo, YANG Fan. Effect of voltage intensity on sludge electro-dewatering efficiency and characteristics of organic matters in filtrate[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3333-3340. doi: 10.12030/j.cjee.201809016

电压强度对污泥电脱水效能及滤液有机物特征的影响

  • 基金项目:

    国家自然科学基金资助项目(51308392)

Effect of voltage intensity on sludge electro-dewatering efficiency and characteristics of organic matters in filtrate

  • Fund Project:
  • 摘要: 为优化污泥电脱水过程控制及明确其关键影响因素,考察了不同电压强度(0、15、35和55 V)对污泥电脱水效果的影响,并基于三维荧光光谱和分子质量分布的分析,研究了阴阳两极滤液中溶解性有机物的含量和组分变化。研究结果表明,随着电压强度增加,污泥脱水效果得到提升,在55 V电压强度下,阳极脱除滤液量相较于无电压作用下的48 mL增加到60 mL,阴极滤液量由对照的90 mL增加到102 mL。电场的作用可使污泥絮体中蛋白质类大分子有机物向阴极迁移。因此,电场辅助具有提升机械压滤脱水效果的作用,这种作用与电场作用下污泥絮体中蛋白质类有机物的迁移有关,并且,电压越强,这种作用越显著。而蛋白质的迁移导致其对水分子的束缚以及絮体间的静电平衡的改变,可能是污泥机械脱水效率得到提升的重要原因。
  • 加载中
  • [1] 张强,刘欢,刘鹏,等. 调理剂对深度脱水污泥热解特性的影响[J]. 化工学报,2014,65(4):1396-1402
    [2] VAXELAIRE J, CéZAC P.Moisture distribution in activated sludges: A review[J].Water Research,2004,38(9):2215-2230 10.1016/j.watres.2004.02.021
    [3] MAHMOUD A, OLIVIER J, VAXELAIRE J, et al.Electrical field: A historical review of its application and contributions in wastewater sludge dewatering[J].Water Research,2010,44(8):2381-2407 10.1016/j.watres.2010.01.033
    [4] YANG Z, PENG X F, LEE D J.Electroosmotic flow in sludge flocs[J].International Journal of Heat and Mass Transfer,2009,52(13/14):2992-2999 10.1016/j.ijheatmasstransfer.2009.02.022
    [5] CHU C P, LEE D J, LIU Z, et al.Morphology of sludge cake at electroosmosis dewatering[J].Separation Science and Technology,2005,39(6):1331-1346 10.1081/SS-120030486
    [6] CITEAU M, LARUE O, VOROBIEV E.Influence of filter cell configuration and process parameters on the electro-osmotic dewatering of sewage sludge[J].Separation Science and Technology,2012,47(1):11-21 10.1080/01496395.2011.616567
    [7] WANG H, HU H, WANG H, et al.Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process[J].Science of the Total Environment,2018,643:1065-1073 10.1016/j.scitotenv.2018.06.161
    [8] HU S, HU J, LIU B, et al.In situ generation of zero valent iron for enhanced hydroxyl radical oxidation in an electrooxidation system for sewage sludge dewatering[J].Water Research,2018,145:162-171 10.1016/j.watres.2018.08.027
    [9] DAI Q, MA L, REN N, et al.Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum[J].Water Research,2018,142:337-346 10.1016/j.watres.2018.06.009
    [10] WU B, NI B, HORVAT K, et al.Occurrence state and molecular structure analysis of extracellular proteins with implications on the dewaterability of waste-activated sludge[J].Environmental Science & Technology,2017,51(16):9235-9243 10.1021/acs.est.7b02861
    [11] MIKKELSEN L.Physico-chemical characteristics of full scale sewage sludges with implications to dewatering[J].Water Research,2002,36(10):2451-2462 10.1016/S0043-1354(01)00477-8
    [12] PHAM A T, SILLANP?? M, VIRKUTYTE J.Sludge dewatering by sand-drying bed coupled with electro-dewatering at various potentials[J].International Journal of Mining, Reclamation and Environment,2010,24(2):151-162 10.1080/17480930903132620
    [13] QIAN X, WANG Y, ZHENG H.Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning–horizontal electro-dewatering (CM–HED)[J].Water Research,2016,88:93-103 10.1016/j.watres.2015.10.001
    [14] GUO X, WANG Y, WANG D.Permanganate/bisulfite (PM/BS) conditioning–horizontal electro-dewatering (HED) of activated sludge: Effect of reactive Mn(III) species[J].Water Research,2017,124:584-594 10.1016/j.watres.2017.08.027
    [15] LI H, WANG Y, ZHENG H.Variations of moisture and organics in activated sludge during Fe0/S2O82- conditioning–horizontal electro-dewatering process[J].Water Research,2018,129:83-93 10.1016/j.watres.2017.11.006
    [16] CITEAU M, OLIVIER J, MAHMOUD A, et al.Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: Electrical variables analysis[J].Water Research,2012,46(14):4405-4416 10.1016/j.watres.2012.05.053
    [17] MAHMOUD A, HOADLEY A F A, CONRARDY J, et al.Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering[J].Water Research,2016,103:109-123 10.1016/j.watres.2016.07.016
    [18] OLIVIER J, MAHMOUD A, VAXELAIRE J, et al.Electro-dewatering of anaerobically digested and activated sludges: An energy aspect analysis[J].Drying Technology,2014,32(9):1091-1103 10.1080/07373937.2014.884133
    [19] CITEAU M, OLIVIER J, MAHMOUD A, et al.Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: Electrical variables analysis[J].Water Research,2012,46(14):4405-4416 10.1016/j.watres.2012.05.053
    [20] 同帜,王瑞露,曹秉帝,等. 炭材料调理改善活性污泥脱水性能的影响机制[J]. 环境工程学报,2018,12(7):2094-2105 10.12030/j.cjee.201712004
    [21] SHENG G, YU H.Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J].Water Research,2006,40(6):1233-1239 10.1016/j.watres.2006.01.023
    [22] CHOW C W K, FABRIS R, LEEUWEN J V, et al.Assessing natural organic matter treatability using high performance size exclusion chromatography[J].Environmental Science & Technology,2008,42(17):6683-6689 10.1021/es800794r
    [23] WANG D, XING L, XIE J, et al.Application of advanced characterization techniques to assess DOM treatability of micro-polluted and un-polluted drinking source waters in China[J].Chemosphere,2010,81(1):39-45 10.1016/j.chemosphere.2010.07.013
    [24] ZHANG W, CAO B, WANG D, et al.Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: Effects of pH and ferrate dosage[J].Biochemical Engineering Journal,2016,106:37-47 10.1016/j.bej.2015.11.004
    [25] 于晓艳,王润娟,支苏丽,等. 胞外聚合物对生物污泥电渗透脱水特性的影响[J]. 中国给水排水,2012,28(15):1-5
    [26] CHEN W, WESTERHOFF P, LEENHEER J A, et al.Fluorescence excitation?emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology,2003,37(24):5701-5710 10.1021/es034354c
    [27] LYKO S, WINTGENS T, ALHALBOUNI D, et al.Long-term monitoring of a full-scale municipal membrane bioreactor:Characterisation of foulants and operational performance[J].Journal of Membrane Science,2008,317(1/2):78-87 10.1016/j.memsci.2007.07.008
    [28] 李亚林,戚蓝月,胡听听,等. 电渗透-过硫酸盐氧化对污泥胞外聚合物的影响[J]. 工业安全与环保,2017,43(6):93-97
    [29] 刘吉宝,李亚明,吕鑑,等. 污水处理厂不同工艺的污泥脱水效能分析及其影响因素研究[J]. 环境科学,2015,36(10):3794-3800
    [30] LIU J, WEI Y, LI K, et al.Microwave-acid pretreatment: A potential process for sludge dewaterability[J].Water Research,2016,90:225-234 10.1016/j.watres.2015.12.012
  • 加载中
计量
  • 文章访问数:  2311
  • HTML全文浏览数:  2087
  • PDF下载数:  143
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-29

电压强度对污泥电脱水效能及滤液有机物特征的影响

  • 1. 中国海洋大学环境科学与工程学院,青岛 266100
  • 2. 华北水利水电大学环境与市政工程学院,郑州 450045
  • 3. 中国科学院生态环境研究中心,北京 100085
  • 4. 天津农学院工程技术学院,天津 300384
基金项目:

国家自然科学基金资助项目(51308392)

摘要: 为优化污泥电脱水过程控制及明确其关键影响因素,考察了不同电压强度(0、15、35和55 V)对污泥电脱水效果的影响,并基于三维荧光光谱和分子质量分布的分析,研究了阴阳两极滤液中溶解性有机物的含量和组分变化。研究结果表明,随着电压强度增加,污泥脱水效果得到提升,在55 V电压强度下,阳极脱除滤液量相较于无电压作用下的48 mL增加到60 mL,阴极滤液量由对照的90 mL增加到102 mL。电场的作用可使污泥絮体中蛋白质类大分子有机物向阴极迁移。因此,电场辅助具有提升机械压滤脱水效果的作用,这种作用与电场作用下污泥絮体中蛋白质类有机物的迁移有关,并且,电压越强,这种作用越显著。而蛋白质的迁移导致其对水分子的束缚以及絮体间的静电平衡的改变,可能是污泥机械脱水效率得到提升的重要原因。

English Abstract

参考文献 (30)

目录

/

返回文章
返回