水葫芦压滤脱水与鲜汁强化除磷工艺
Process of mechanical dewatering of water hyacinth and enhanced phosphorus removal from its fresh juice
-
摘要: 就地对水葫芦进行粉碎压滤能有效减少质量和体积,降低处置难度,减少运输成本。针对水葫芦鲜渣含水率高,鲜汁污染物浓度高的问题,研究不同压滤时间、压力和调理剂的添加对压滤后鲜渣的含水率的影响;同时采用化学混凝法研究不同混凝剂、pH和混凝时间以及CaO的添加对鲜汁中COD和TP的去除效果的影响。结果表明:鲜渣含水率随着压滤压力、时间的增加而降低,8 MPa压力条件下鲜渣含水率为66.35%,添加鲜货质量10%的木屑和CaO能使含水率降为46.17%和40.21%,加快鲜渣脱水速度;FeCl3、Al2(SO4)3和PAC等3种混凝剂均能有效去除鲜汁中COD和TP,去除率分别可达80%以上和85%以上,进一步添加CaO能强化TP的去除效果,去除率可达96%以上;水葫芦压滤脱水和鲜汁预处理工艺为水葫芦处置提供了一种新的途径。
-
关键词:
- 水葫芦 /
- 混凝沉淀 /
- 压滤脱水 /
- 强化除磷 /
- 富营养化水体生态修复
Abstract: Crushing and squeezing water hyacinth on site can effectively decrease its mass and volume, reduce its disposal difficulty and transportation cost. In view of the high water content of the water hyacinth residue and high contaminant content of fresh juice, the influences of pressing time, pressure and conditioners on the water content of fresh residue after pressure filtering were studied. At the same time, the effects of coagulants, pH, coagulation time and CaO addition on the COD and TP removal from fresh juice were studied when chemical coagulation was used. The results showed that the water content of fresh residue decreased with the increase of pressure and time. The water content of fresh residue under 8 MPa pressure was 66.35%, adding sawdust or CaO with a quality of 10% of water hyacinth could reduce water content to 46.17% and 40.21%, respectively, and accelerate the dewatering rate of water hyacinth. Coagulation with FeCl3, Al2(SO4)3 or PAC could effectively remove COD and TP from fresh juice, and the removal rate can reach above 80% and above 85%, respectively. Further, CaO addition could enhance the removal of TP with the removal rate of above 96%. The process of water hyacinth dewatering and its fresh juice pretreatment provides a new way for water hyacinth treatment. -
[1] BATTY L C, DOLAN C. The potential use of phytoremediation for sites with mixed organic and inorganic contamination[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(3): 217-259. [2] QIN H J, ZHANG Z Y, LIU M H, et al. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce[J]. Ecological Engineering, 2016, 95: 753-762. [3] 孙小燕, 丁洪. 水葫芦的综合利用与防治技术[J]. 农业资源与环境学报, 2004, 21(5): 35-36. [4] 吾甫尔·米吉提,艾尔肯·热合曼,苏里坦·阿巴拜克力, 等. 利用水浮莲(Pistia stratiotes L.)净化城市污水的实践[J]. 中国环境科学, 2002, 22(3): 77-80. [5] VERMA V K, GUPTA R K, RAI J P N.Biosorption of Pb and Zn from pulp and paper industry effluent by water hyacinth (Eichhornia crassipes)[J]. Journal of Scientific and Industrial Research, 2005, 64(10): 778-781. [6] 朱磊, 胡国粱, 卢剑波, 等. 水葫芦的资源化利用[J]. 浙江农业科学, 2006, 1(4): 460-463. [7] 张志勇, 张迎颖, 刘海琴, 等. 滇池水域凤眼莲规模化种养种群扩繁特征与水质改善效果[J]. 江苏农业学报, 2014, 30(2): 310-318. [8] 张志勇, 刘海琴, 严少华, 等. 水葫芦去除不同富营养化水体中氮、磷能力的比较[J]. 江苏农业学报, 2009, 25(5): 1039-1046. [9] 宋伟, 韩士群, 刘海琴, 等. 水葫芦去除污水中氮磷的效果[J]. 安徽农业科学, 2008, 36(25): 11076-11076. [10] 周新伟, 沈明星, 金梅娟, 等. 不同水葫芦覆盖度对富营养水体氮、磷的去除效果[J]. 江苏农业学报, 2016, 32(1): 97-105. [11] 陈文萍, 徐舒阳, 那中元, 等. 紫根水葫芦对重金属水体的净化作用[J]. 环境工程学报, 2016, 10(5): 2284-2290. [12] 张皓东. 滇池水葫芦富集砷、铅、镉形态模拟研究[D]. 昆明: 昆明理工大学, 2012. [13] 郑家传. 利用水葫芦根系去除水中重金属的效率和机理研究[D]. 合肥: 中国科学技术大学, 2010. [14] SINGH J, KALAMDHAD A S.Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth[J]. Bioresource Technology, 2013, 138(2): 148-155. [15] 刘健峰. 水葫芦汁液厌氧消化工艺的比较研究[D]. 昆明: 云南师范大学, 2017. [16] 胡晓明, 查国君, 张无敌, 等. 水葫芦汁中温沼气发酵的实验研究[J]. 能源工程, 2008(2): 36-38. [17] 叶小梅, 常志州, 钱玉婷, 等. 鲜水葫芦与其汁液厌氧发酵产沼气效率比较[J]. 农业工程学报, 2012, 28(4): 208-214. [18] 李柏林, 梁亚楠, 张程琛, 等. 粉煤灰-铝土矿改性制备铝铁复合混凝剂的除磷性能及混凝机理研究[J]. 环境科学学报, 2016, 36(7): 2503-2511.
计量
- 文章访问数: 2630
- HTML全文浏览数: 2559
- PDF下载数: 136
- 施引文献: 0