响应曲面法优化土壤镉浸提过程

钱元宇, 刘克. 响应曲面法优化土壤镉浸提过程[J]. 环境工程学报, 2018, 12(12): 3448-3455. doi: 10.12030/j.cjee.201807054
引用本文: 钱元宇, 刘克. 响应曲面法优化土壤镉浸提过程[J]. 环境工程学报, 2018, 12(12): 3448-3455. doi: 10.12030/j.cjee.201807054
QIAN Yuanyu, LIU Ke. Optimization of soil Cd extraction process using the response surface methodology[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3448-3455. doi: 10.12030/j.cjee.201807054
Citation: QIAN Yuanyu, LIU Ke. Optimization of soil Cd extraction process using the response surface methodology[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3448-3455. doi: 10.12030/j.cjee.201807054

响应曲面法优化土壤镉浸提过程

  • 基金项目:

    国家自然科学基金地区科学基金资助项目(21866008)

    贵州大学引进人才科研项目(贵大人基合字(2017)51号)

Optimization of soil Cd extraction process using the response surface methodology

  • Fund Project:
  • 摘要: 以温度、提取时间、土液比为研究因素,考察浸提剂乙二胺四乙酸二钠(EDTA-2Na)对土壤Cd浸提率的影响。首先,以单因素实验为基础,研究3因素单独对土壤Cd浸提率的影响,结果发现随着3因素水平的提高,土壤Cd浸提率整体呈上升趋势,在一定的范围内(温度20~25 ℃、提取时间50~90 min、土液比1:2~1:5),土壤Cd浸提率增大较为明显,分别上升了35%、8%、17%,而随着3因素水平的提升(温度30~35 ℃、提取时间130~170 min、土液比1:7~1:10),土壤Cd浸提率上升了5%、1%、4%;其次,采用响应曲面分析法中Box-Behnken中心实验设计法,建立了基于土壤Cd浸提率影响因素的二次函数预测模型,结果表明,模型预测值与实验实测值较为接近,各实验点几乎全部位于1:1线。在3因素研究范围内,当温度为30 ℃、提取时间为130 min、土液比约为1:6.5时,土壤Cd浸提率效果最佳。所得结论有助于进一步改进浸提剂EDTA-2Na对土壤Cd的浸提效率。
  • 加载中
  • [1] LIU K,LV J,HE W,et al.Major factors influencing cadmium uptake from the soil into wheat plants[J].Ecotoxicology and Environmental Safety,2015,113:207–213 10.1016/j.ecoenv.2014.12.005
    [2] 王芳丽,宋宁宁,王瑞刚,等.土壤-甘蔗作物系统中镉的生物有效性研究[J].农业环境科学学报,2012,31(5):904-912
    [3] 梁振飞,韦东普,王卫,等.不同淋洗剂对不同性质污染土壤中镉的浸提效率比较[J].土壤通报,2015,46(5):1114-1120
    [4] 易磊,张增强,沈锋,等.浸提条件和浸提剂类型对土壤重金属浸提效率的影响[J].西北农业学报,2012,21(1):156-160
    [5] 可欣,李培军,张昀,等.利用乙二胺四乙酸淋洗修复重金属污染的土壤及其动力学[J].应用生态学报,2007,18(3):601-606
    [6] 姚苹,郭欣,王亚婷,等.柠檬酸强化低浓度EDTA对成都平原农田土壤铅和镉的淋洗效率[J].农业环境科学学报,2018,37(3):448-455
    [7] 王勇,李伟光,宿程远,等.响应曲面法优化均相Fenton深度处理皮革废水[J].环境科学学报,2012,32(10):2408-2414
    [8] 陈亮,张炜,陈元涛,等.响应曲面法优化黑果枸杞多糖的超声提取工艺[J].食品科技,2015(1):220-227
    [9] 程正军.运用响应曲面法优化有机污染物吸附过程参数及其吸附平衡和动力学研究[D].成都:西南石油大学, 2015
    [10] MUAZU N D,HALADU S A,JARRAH N,et al.Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design[J].Journal of Hazardous Materials,2018,342:58-62 10.1016/j.jhazmat.2017.08.013
    [11] WANG G,ZHANG S,XU X, et al.Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility[J].Science of the Total Environment,2016,569:557-568 10.1016/j.scitotenv.2016.06.155
    [12] 马建军.土壤中有效态镉提取条件探讨[J].河北农业技术师范学院学报,1998,12(3):11-15
    [13] CHOI?SKA-PULIT A,SOBOLCZYK-BEDNAREK J,WOJCIECH L.Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design[J].Ecotoxicology and Environmental Safety,2018,149:275-283 10.1016/j.ecoenv.2017.12.008
    [14] 丁竹红,胡忻,尹大强.温度对EDTA 和DTPA 浸提过程中重金属及矿质元素的溶出的效应[C]//中国化学会环境化学专业委员会,中国环境科学学会环境化学分会,中国毒理学会分析毒理专业委员会.第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集.上海,2011
    [15] 胡宁静,骆永明,宋静.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J].土壤学报,2007,44(3):437-443
    [16] 刘丽芬,张晓文,李密,等.两种螯合剂单独和复合浸提土壤重金属效果的研究[J].农业环境科学学报,2016,35(1):75-79
    [17] 黄宝荣,刘云国,张慧智,等.化学萃取技术在重金属污染土壤修复中应用的研究[J].环境工程,2003,21(4):48-50
    [18] ZOU Z,QIU R L,ZHANG W H, et al.The study of operating variables in soil washing with EDTA[J].Environmental Pollution,2009,157(1):229-236 10.1016/j.envpol.2008.07.009
    [19] 尹君,刘文菊.土壤中有效态镉、汞浸提剂和浸提条件研究[J]. 河北农业大学学报,2000,23(2):25-28
    [20] 陈晓婷,王欣,陈新.几种螯合剂对污染土壤的重金属提取效率的研究[J]. 江苏环境科技,2005,18(2):9-10
    [21] 于平,徐超超,朱鹏志.响应面法优化重组大肠杆菌发酵生产藻蓝蛋白培养基的关键介质组分[J]. 食品科学,2018,39(16):161-167
    [22] WANG G,ZHANG S,LI T, et al.Application of response surface methodology for the optimization of lead removal from contaminated soil using chelants[J].RSC Advances,2015,5(71):58010-58018 10.1039/C5RA06977G
    [23] RATHORE S,SINGH K.Application of response surface methodology for optimization study of equilibrium moisture sorption content for efficient drying and storage of pearl millet flour[J].Journal of Food Measurement & Characterization,2018,12(3):2020-2031 10.1007/s11694-018-9817-1
    [24] 赵玲艳,张红芳,陈崇莲,等.响应曲面法优化枸骨总皂苷的提取工艺及抗氧化活性[J].江苏农业科学,2017,45(22):205-209
    [25] 宋江峰,李大婧,刘春泉.响应曲面法优选人工蛹虫草多糖微波提取工艺[J].江苏农业学报,2009,25(5):1143-1150
    [26] 李发生,韩梅,熊代群,等.不同浸提剂对几种典型土壤中重金属有效态的浸提效率研究[J].农业环境科学学报, 2003,22(6):704-706
    [27] 张传琦.土壤中重金属砷、镉、铅、铬、汞有效态浸提剂的研究[D].合肥:安徽农业大学,2011
  • 加载中
计量
  • 文章访问数:  2089
  • HTML全文浏览数:  1912
  • PDF下载数:  125
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-29

响应曲面法优化土壤镉浸提过程

  • 1. 贵州大学农学院,贵州省土壤质量安全与水肥调控重点实验室,贵阳 550025
基金项目:

国家自然科学基金地区科学基金资助项目(21866008)

贵州大学引进人才科研项目(贵大人基合字(2017)51号)

摘要: 以温度、提取时间、土液比为研究因素,考察浸提剂乙二胺四乙酸二钠(EDTA-2Na)对土壤Cd浸提率的影响。首先,以单因素实验为基础,研究3因素单独对土壤Cd浸提率的影响,结果发现随着3因素水平的提高,土壤Cd浸提率整体呈上升趋势,在一定的范围内(温度20~25 ℃、提取时间50~90 min、土液比1:2~1:5),土壤Cd浸提率增大较为明显,分别上升了35%、8%、17%,而随着3因素水平的提升(温度30~35 ℃、提取时间130~170 min、土液比1:7~1:10),土壤Cd浸提率上升了5%、1%、4%;其次,采用响应曲面分析法中Box-Behnken中心实验设计法,建立了基于土壤Cd浸提率影响因素的二次函数预测模型,结果表明,模型预测值与实验实测值较为接近,各实验点几乎全部位于1:1线。在3因素研究范围内,当温度为30 ℃、提取时间为130 min、土液比约为1:6.5时,土壤Cd浸提率效果最佳。所得结论有助于进一步改进浸提剂EDTA-2Na对土壤Cd的浸提效率。

English Abstract

参考文献 (27)

目录

/

返回文章
返回