三氧化钨的生物合成及其对亚甲基蓝的光降解

王亚男, 李伟, 贾欠欠, 段晋明. 三氧化钨的生物合成及其对亚甲基蓝的光降解[J]. 环境工程学报, 2018, 12(12): 3297-3307. doi: 10.12030/j.cjee.201806064
引用本文: 王亚男, 李伟, 贾欠欠, 段晋明. 三氧化钨的生物合成及其对亚甲基蓝的光降解[J]. 环境工程学报, 2018, 12(12): 3297-3307. doi: 10.12030/j.cjee.201806064
WANG Yanan, LI Wei, JIA Qianqian, DUAN Jinming. Biosynthesis of tungsten trioxide and their photodegradation of methylene blue[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3297-3307. doi: 10.12030/j.cjee.201806064
Citation: WANG Yanan, LI Wei, JIA Qianqian, DUAN Jinming. Biosynthesis of tungsten trioxide and their photodegradation of methylene blue[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3297-3307. doi: 10.12030/j.cjee.201806064

三氧化钨的生物合成及其对亚甲基蓝的光降解

  • 基金项目:

    国家自然科学基金资助项目(41373123)

    陕西省自然科学基础研究基金资助项目(2018JM5156)

Biosynthesis of tungsten trioxide and their photodegradation of methylene blue

  • Fund Project:
  • 摘要: 利用菌株Pantoea sp.IMH生物合成三氧化钨(WO3)材料并对合成条件进行优化,通过高分辨透射电镜(HRTEM)、选区电子衍射(SAED)、X射线能谱(EDS)及X射线粉末衍射(XRD)对生物合成的WO3材料进行表征,同时研究了其光降解亚甲基蓝的性能。结果表明,生物合成WO3的最优合成条件是钨酸钠反应浓度为100 mmol·L-1、pH为2、细胞与钨酸钠反应时间为10 h、且煅烧温度为800 ℃,在该条件下,WO3为多晶片状结构。相比于标品WO3和化学合成纳米WO3,生物合成WO3材料对亚甲基蓝染料具有更好的光降解性能,可以在紫外光照射40 min内完全光降解亚甲基蓝(50 mL,0.037 5 mmol·L-1)。利用N2吸附-解吸等温线、对苯二甲酸(TA)荧光探针法、紫外漫反射(DRS)光谱和X射线光电子(XPS)能谱分别对不同WO3材料进行检测,结果表明生物合成WO3的良好催化性能与材料的比表面积、羟基自由基产量以及氧空位等均有关系。
  • 加载中
  • [1] AKHTAR M F, ASHRAF M, JAVEED A, et al.Toxicity appraisal of untreated dyeing industry wastewater based on chemical characterization and short term bioassays[J].Bulletin of Environmental Contamination and Toxicology,2016,96(4):502-507 10.1007/s00128-016-1759-x
    [2] BELL J, BUCKLEY C A.Treatment of a textile dye in the anaerobic baffled reactor[J].Water SA,2003,29(2):129-134 10.4314/wsa.v29i2.4847
    [3] SALEM M A, BAKR E A, ELATTAR H G.Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of congo red in aqueous solution[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,188:155-163 10.1016/j.saa.2017.07.002
    [4] TAO P, SHAO M H, SONG C W, et al.Enhanced photocatalytic activity of Cu2O/Cu heterogeneous nanoparticles synthesized in aqueous colloidal solutions on degradation of methyl orange[J].Rare Metal Materials and Engineering,2016,45(9):2214-2218 10.1016/S1875-5372(17)30005-X
    [5] VERMA A K, DASH R R, BHUNIA P.A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J].Journal of Environmental Management,2012,93(1):154-168 10.1016/j.jenvman.2011.09.012
    [6] ZHANG H, XUE G, CHEN H, et al.Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment[J].Chemosphere,2018,191:64-71 10.1016/j.chemosphere.2017.10.026
    [7] SIVASANKARAN S, KUMAR B, NAVEENKUMAR A Y.Synthesis, characterization and application of supported cobalt oxide natural light active photocatalyst[J].Advanced Science Letters,2017,23(3):1853-1857 10.1166/asl.2017.8490
    [8] 刘志进, 段晋明, 王莉瑛. 红球菌LSJ-6介导的金纳米颗粒的合成及其对亚甲基蓝的吸附去除[J]. 环境科学学报,2017,37(6):2093-2098 10.13671/j.hjkxxb.2016.0385
    [9] 谷一冉. 纳米三氧化钨的制备及其光催化性能研究[D]. 南京: 东南大学,2016
    [10] LEE Y A, HAN S I, RHEE H, et al.Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure[J].Applied Surface Science,2018,440:1244-1251 10.1016/j.apsusc.2018.01.157
    [11] 卢圆圆, 刘果, 张静, 等.WO3中单斜相/六方相异相结的构建及提高光催化降解罗丹明B活性[J]. 催化学报,2016,37(3):349-358
    [12] WEI S H, XING Y, LI Y, et al.Preparation and gas sensing properties of flower-like WO3 hierarchical architecture[J].Vacuum,2016,129:13-19 10.1016/j.jallcom.2015.09.120
    [13] DIAH S, STEFANUS H N, HASNAN N, et al.Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment[J].Frontiers of Chemical Science and Engineering,2012,6(4):371-380 10.1007/s11705-012-1215-3
    [14] 刘勇, 黄超, 翁秀兰, 等. 绿色合成纳米铁去除水中铬离子[J]. 环境工程学报,2016,10(8):4118-4124 10.12030/j.cjee.201601146
    [15] TAKASHI O, YUMA S, ASEP B D N, et al.Biosorption of tungsten by Escherichia coli for an environmentally friendly recycling system [J].Industrial & Engineering Chemistry Research,2013,52:14441-14448 10.1021/ie401193y
    [16] CHEN P Q, QIN M L, CHEN Z, et al.Solution combustion synthesis of nanosized WOx: Characterization, mechanism and excellent photocatalytic properties[J].RSC Advances,2016,86(6):83101-83109 10.1039/C6RA12375A
    [17] TSYNTSARU N, CESIULIS H, DONTEN M, et al.Modern trends in tungsten alloys electrodeposition with iron group metals[J].Surface Engineering and Applied Electrochemistry,2013,48(6):491-520 10.3103/S1068375512060038
    [18] YIN J, XING W, LI Y, et al.The influence factors of the crystallinity and crystal size of ZSM-5 zeolite[J].Journal of Molecular Catalysis (China),2012,26(2):162-168
    [19] ZHAN T, TU W, CHENG Y, et al.The synthesis of micro and nano WO3 powders under the sparks of plasma electrolytic oxidation of Al in a tungstate electrolyte[J].Ceramics International,2018,44(9):10402-10411 10.1016/j.ceramint.2018.03.054
    [20] TSYNTSARU N, CESIULIS H, DONTEN M, et al.Modern trends in tungsten alloys electrodeposition with iron group metals[J].Surface Engineering and Applied Electrochemistry,2013,48(6):491-520 10.3103/S1068375512060038
    [21] XI X, LI M, MA L, et al.Tungsten trioxide nanorod having photocatalytic properties useful for preparing photocatalyst comprises one dimensional rod-shaped nano-material made up of tungsten trioxide: CN108147462-A[P]. 2017-11-22
    [22] 王岳俊.TiO2光催化剂的改性及其降解染料的基础研究[D]. 长沙: 中南大学,2007
    [23] XIE Y, YUAN C, LI X.Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation[J].Materials Science and Engineering B,2005,117(3):325-333 10.1016/j.mseb.2004.12.073
    [24] LIU G, ZHAO J.Photocatalytic degradation of dye sulforhodamine B: A comparative study of photocatalysis with photosensitization[J].New Journal of Chemistry,2000,24(6):411-417 10.1039/B001573N
    [25] VATTIKUTI S V P, POLICE A K R, SHIM J, et al.In situ fabrication of the Bi2O3-V2O5 hybrid embedded with graphitic carbon nitride nanosheets: Oxygen vacancies mediated enhanced visible-light-driven photocatalytic degradation of organic pollutants and hydrogen evolution[J].Applied Surface Science,2018,447:740-756 10.1016/j.apsusc.2018.04.040
    [26] CHAI B, LIU C,YAN J, et al.In-situ synthesis of WO3 nanoplates anchored on g-C3N4Z-schemephotocatalysts for significantly enhanced photocatalytic activity[J].Applied Surface Science,2018,448:1-8 10.1016/j.apsusc.2018.04.116
    [27] YUKIHIRO N, YOSHION.The pH dependence of OH radical formation in photo-electrochemical water oxidation with rutile TiO2 single crystals[J].Physical Chemistry Chemical Physics,2015,17:30570-30576 10.1039/C5CP04531B
    [28] ZHONG X, SUN Y, CHEN X, et al.Mo doping induced more active sites in urchin-like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction[J].Advanced Functional Materials,2016,26(32):5778-5786 10.1002/adfm.201601732
    [29] CONG S, GENG F, ZHAO Z.Tungsten oxide materials for optoelectronic applications [J].Advanced Materials,2016,28:10518-10528 10.1002/adma.201601109
  • 加载中
计量
  • 文章访问数:  2934
  • HTML全文浏览数:  2711
  • PDF下载数:  168
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-29

三氧化钨的生物合成及其对亚甲基蓝的光降解

  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
基金项目:

国家自然科学基金资助项目(41373123)

陕西省自然科学基础研究基金资助项目(2018JM5156)

摘要: 利用菌株Pantoea sp.IMH生物合成三氧化钨(WO3)材料并对合成条件进行优化,通过高分辨透射电镜(HRTEM)、选区电子衍射(SAED)、X射线能谱(EDS)及X射线粉末衍射(XRD)对生物合成的WO3材料进行表征,同时研究了其光降解亚甲基蓝的性能。结果表明,生物合成WO3的最优合成条件是钨酸钠反应浓度为100 mmol·L-1、pH为2、细胞与钨酸钠反应时间为10 h、且煅烧温度为800 ℃,在该条件下,WO3为多晶片状结构。相比于标品WO3和化学合成纳米WO3,生物合成WO3材料对亚甲基蓝染料具有更好的光降解性能,可以在紫外光照射40 min内完全光降解亚甲基蓝(50 mL,0.037 5 mmol·L-1)。利用N2吸附-解吸等温线、对苯二甲酸(TA)荧光探针法、紫外漫反射(DRS)光谱和X射线光电子(XPS)能谱分别对不同WO3材料进行检测,结果表明生物合成WO3的良好催化性能与材料的比表面积、羟基自由基产量以及氧空位等均有关系。

English Abstract

参考文献 (29)

目录

/

返回文章
返回