土壤重金属的竹基活性炭吸附及近红外光谱预测

刘洁, 董书岑, 张文博, 陆薇. 土壤重金属的竹基活性炭吸附及近红外光谱预测[J]. 环境工程学报, 2018, 12(10): 2855-2863. doi: 10.12030/j.cjee.201806023
引用本文: 刘洁, 董书岑, 张文博, 陆薇. 土壤重金属的竹基活性炭吸附及近红外光谱预测[J]. 环境工程学报, 2018, 12(10): 2855-2863. doi: 10.12030/j.cjee.201806023
LIU Jie, DONG Shucen, ZHANG Wenbo, LU Wei. Bamboo activated carbon adsorption and near infrared spectroscopy prediction of heavy metal in soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2855-2863. doi: 10.12030/j.cjee.201806023
Citation: LIU Jie, DONG Shucen, ZHANG Wenbo, LU Wei. Bamboo activated carbon adsorption and near infrared spectroscopy prediction of heavy metal in soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2855-2863. doi: 10.12030/j.cjee.201806023

土壤重金属的竹基活性炭吸附及近红外光谱预测

  • 基金项目:

    国家林业局948项目 (2014-4-04)

Bamboo activated carbon adsorption and near infrared spectroscopy prediction of heavy metal in soil

  • Fund Project:
  • 摘要: 为探究竹基活性炭对土壤的修复及改良效果,用水蒸气活化法制备出竹基活性炭,分析其孔结构特性,采用盆栽实验的方法,研究不同添加量(0%、10%、20%)的竹基活性炭对土壤性质、土壤重金属含量、植物株高和生物量以及植物地上和地下部分重金属含量的影响,研究发现随着竹基活性炭添加量的升高,土壤pH和有机质逐渐上升,且土壤中的重金属含量下降明显。其中,添加量高的竹基活性炭对土壤中的重金属Cu、Pb、Zn的去除率可达94.8%、82.1%、87.7%。添加竹基活性炭可增加百日草株高及生物量,其根和茎叶部分的重金属浓度有所降低,表明竹基活性炭吸附土壤重金属性能显著。同时,利用近红外光谱技术结合偏最小二乘法建立了不同竹基活性炭添加比例的土壤中的铜离子含量预测模型。该模型相关系数R2达到0.995 9,相对分析误差RPD大于10,模型相关性好,具有良好的预测性能。
  • 加载中
  • [1] 郭彦海, 袁孙许, 超袁, 等. 上海某生活垃圾焚烧厂周边土壤重金属污染特征尧来源分析及潜在生态风险评价[J]. 环境科学,2017,38(12):5262-5271 10.13227/j.hjkx.201704113
    [2] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业,2014,36(5):10-11
    [3] LI Z Y, MA Z W, KUIJP T J V D, et al.A review of soil heavy metal pollution frommines in China: Pollution and health risk assessment[J].Science of the Total Environment,2014,468-469:843-853 10.1016/j.scitotenv.2013.08.090
    [4] 周雅, 毕春娟, 周枭潇, 等. 上海市郊工业区附近蔬菜中重金属分布及其健康风险[J]. 环境科学,2017,38(12):5292-5298 10.13227/j.hjkx.201702104
    [5] KOPTSIK G N.Modern approaches to remediation of heavy metal polluted soils: A review[J].Eurasian Soil Science,2014,47(7):707-722 10.1134/S1064229314070072
    [6] DADA E O, NJUKU K L, OSUNTOKI A A, et al.A review of current techniques of in situ physic-chemical and biological remediation of heavy metals polluted soil[J].Ethiopian Journal of Environmental Studies & Management,2015,8(5):606-615 10.4314/ejesm.v8i5.13
    [7] CHIBUIKE G U, OBIORA S C.Heavy metal polluted soils: Effect on plants and bioremediation methods[J].Applied and Environmental Soil Science,2014,2014:243-254 10.1155/2014/752708
    [8] 许剑臣, 李晔, 肖华锋, 等. 改良剂对重金属复合污染土壤的修复效果[J]. 环境工程学报,2017,11(12):6511-6517
    [9] HORIKAWA T, KITAKAZE Y, SEKIDA T, et al.Characteristics and humidity control capacity of activated carbon from bamboo[J].Bioresource Technology,2010,101(11):3964-3969 10.1016/j.biortech.2010.01.032
    [10] BEN-DOR E, BANIN A.Near-infrared analysis (NIRS) as amethod to simultaneously evaluate spectral featureless constituents in soils[J].Soil Science,1995,159(4):259-270 10.1097/00010694-199504000-00005
    [11] MATSUNAGA T.A temperature-emissivity separation method using an empirical relationship between the mean, the maximum and the minimum of the thermal infrared emissivity spectrum[J].Journal of Remote Sensing Society of Japan,1992,42:83-106 10.11440/rssj1981.14.230
    [12] MORRA M J, HALL M H, FREEBORN L L.Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy[J].Soil Science Society of America Journal, 1991,55(1):288-291 10.2136/sssaj1991.03615995005500010051x
    [13] MARIA K, RENE G, CECILIE H, et al.Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination[J].Biosystems Engineering,2017,156:157-172 10.1016/j.biosystemseng.2017.01.007
    [14] GAYDON V, COLINET G, BOCK L, et al.Method for near infrared sensor-based sorting of a copper ore[J].Journal of Near Infrared Spectroscopy,2009,17(5):177-194 10.1255/jnirs.849
    [15] 刘运坤. 炭改良剂对复合污染土壤Cu的钝化效果[D]. 南昌:南昌航空大学,2016
    [16] XU P, SUN C X, YE X Z, et al.The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil[J].Ecotoxicology and Environmental Safety,2016,132:94-100 10.1016/j.ecoenv.2016.05.031
    [17] KIM H S, KIM K R, KIM H J, et al.Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil[J].Environmental Earth Sciences,2015,74(2):1249-1259 10.1007/s12665-015-4116-1
    [18] ZHANG Y J, XING Z J, DUAN Z K, et al.Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste[J].Applied Surface Science,2014,315(4):279-286 10.1016/j.apsusc.2014.07.126
    [19] AYUKE F O, BRUSSAARDA L, VANLAUWEB B, et al.Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation[J].Applied Soil Ecology,2011,48(1):53-62 10.1016/j.apsoil.2011.02.001
    [20] 李子龙, 马双枫, 王栋, 等. 活性炭吸附水中金属离子和有机物吸附模式和机理的研究[J]. 环境科学与管理,2009,34(10):88-92
    [21] 赵秀云, 文贞, 张桢超, 等. 生物质活性炭在污染土壤修复中的应用及稳定性研究进展[J]. 绿色科技,2017(14):88-90
    [22] KARER J, WAWRA A, ZEHETNER F.Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils[J].Water,Air & Soil Pollution,2015,226(10):342-353 10.1007/s11270-015-2584-2
    [23] 徐龙君, 刘科, 张福凯. 磁性活性炭处理含铜废水[J]. 环境工程学报,2012,6(9):3121-3124
    [24] 张蕊, 葛滢. 稻壳基活性炭制备及其对重金属吸附研究[J]. 环境污染与防治,2011,33(1):41-45
    [25] UZUN I, GUZEL F.Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents[J].Turkish Journal of Chemistry,2014,24(3):291-297
    [26] BOHLI T, OUEDERNI A, FIOL N, et al.Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones[J].Desalination & Water Treatment,2015,53(4):1082-1088 10.1080/19443994.2013.859099
    [27] HMID A, CHAMI Z A, SILLEN W, et al.Olive mill waste biochar: A promising soil amendment for metal immobilization in contaminated soils[J].Environmental Science & Pollution Research International,2015,22(2):1444-1451 10.1007/s11356-014-3467-6
    [28] JIA W L, WANG B L, WANG C P, et al.Tourmaline and biochar for the remediation of acid soil polluted with heavy metals[J].Journal of Environmental Chemical Engineering,2017,5(3):2107-2114 10.1016/j.jece.2017.04.015
    [29] TAIWO A F, CHINYERE N J.Sorption characteristics for multiple adsorption of heavy metal ionsusing activated carbon from Nigerian bamboo[J].Journal of Materials Science and Chemical Engineering,2016,4(4):39-48 10.4236/msce.2016.44005
    [30] LV D, LIU Y, ZHOU J S, et al.Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions[J].Applied Surface Science,2018,428:648-658 10.1016/j.apsusc.2017.09.151
    [31] TODOROVA M, MOUAZEN A, LANGE H, et al.Potential of near-infrared spectroscopy for measurement of heavy metals in soil as affected by calibration set size[J].Water,Air & Soil Pollution,2014,225(8):2036-2055 10.1007/s11270-014-2036-4
    [32] SIEBIELEC G, MCCARTY G W, STUCZYNSKI T I, et al.Near-and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J].Journal of Environmental Quality,2004,33(6):2056-2069
  • 加载中
计量
  • 文章访问数:  3013
  • HTML全文浏览数:  2839
  • PDF下载数:  183
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

土壤重金属的竹基活性炭吸附及近红外光谱预测

  • 1. 北京师范大学环境学院, 北京100875
  • 2. 北京林业大学材料科学与技术学院,北京 100083
  • 3. 中国轻工业信息中心, 北京 100833
基金项目:

国家林业局948项目 (2014-4-04)

摘要: 为探究竹基活性炭对土壤的修复及改良效果,用水蒸气活化法制备出竹基活性炭,分析其孔结构特性,采用盆栽实验的方法,研究不同添加量(0%、10%、20%)的竹基活性炭对土壤性质、土壤重金属含量、植物株高和生物量以及植物地上和地下部分重金属含量的影响,研究发现随着竹基活性炭添加量的升高,土壤pH和有机质逐渐上升,且土壤中的重金属含量下降明显。其中,添加量高的竹基活性炭对土壤中的重金属Cu、Pb、Zn的去除率可达94.8%、82.1%、87.7%。添加竹基活性炭可增加百日草株高及生物量,其根和茎叶部分的重金属浓度有所降低,表明竹基活性炭吸附土壤重金属性能显著。同时,利用近红外光谱技术结合偏最小二乘法建立了不同竹基活性炭添加比例的土壤中的铜离子含量预测模型。该模型相关系数R2达到0.995 9,相对分析误差RPD大于10,模型相关性好,具有良好的预测性能。

English Abstract

参考文献 (32)

目录

/

返回文章
返回