齿轮-筒电极放电处理有机废气及电极优化
Electrode optimization for gear cylinder electrode discharge treating organic waste gas
-
摘要: 放电等离子体技术被广泛用来处理各类有机污染物,其中放电电极的结构是污染物处理效率的关键。通过实验分别研究了在搭载齿轮-筒电极和线-筒电极的等离子体气体处理器下处理甲苯和VOC的效率。此外,还模拟了齿轮-筒电极的放电间距、齿轮齿数、电压大小对于放电特性与效率的影响。结果表明,齿轮-筒电极处理甲苯的效率比线-筒电极具有优势,最高效率可相差8.3%。齿轮-筒电极在处理VOC时的效率也优于线-筒电极2%~5%。放电间距在8~10 mm左右、齿轮为20齿时的电子数密度最大。同时,放电所产生的电子数密度随着电压的增大而增大,但当电压超过-20 kV时增长缓慢。齿轮-筒电极处理有机废气的效率比线-筒电极有提升,此外,电极结构还有优化提升空间。Abstract: Discharge plasma technology is widely used to treat various organic pollutants, and the structure of discharge electrode is the key to improve the efficiency of pollutant treatment. In this study, the plasma gas processors with the gear-cylinder electrode and the wire-tube one were tested in terms of the treating efficiencies of toluene and VOC. In addition, the effects of the discharge distance, number of gear teeth and voltage on the discharge characteristics and efficiency were simulated. The results show that the gear-cylinder electrode was superior to the wire-tube one in the toluene treatment with the maximum difference of 8.3% in the treatment efficiency. For VOC treatment, the same result was obtained with the treatment efficiency difference of 2%~5%. The largest electron number density occurred at the discharge distance of 8~10 mm and the gear teeth number of 20. Moreover, the electrons number density through discharge increased with the increase of voltage, while it slowed down at the voltages over 20 kV. The efficiency of treating organic waste gas by the gear-cylinder electrode was improved in comparison with the wire-tube one, and the electrode structure could be further optimized.
-
[1] MASAAKI O, TOSHIAKI Y, TOMOYUKI K, et a1. Electric air cleaner composed of non-thermal plasma reactor and electrostatic precipitator[J]. Transactions on Industry Applications,2001, 37(5): 1505-1509. [2] 余正贤. 等离子体技术在大气污染控制中的应用[J]. 广东化工, 2009, 36(7): 131-133. [3] 都基峻, 季学李. 低温等离子体处理气态污染物[J]. 污染防治技术, 2000, 13(1): 33-34. [4] 朱元右, 姜银方. 等离子体技术在大气污染治理中的应用[J]. 环境卫生工程, 2003, 11(4): 183-186. [5] YAVOROSKY N A, PELTSMAN S S. Technology of water treatment using pulsed electric discharges[J]. IEEE Transactions, 2002, 20(3): 422-427. [6] 李胜利, 李劲, 王泽文, 等. 用高压脉冲放电等离子体处理印染废水的研究[J]. 中国环境科学, 1996, 16(1): 73-76. [7] 张越非, 叶齐政, 赵纯. 味精厂废水混合二相体放电预处理的研究[J]. 高电压技术, 2002, 28(2): 39-40. [8] 刘志刚. 负载型TiO2光催化剂在脉冲放电水处理技术中的应用[D]. 大连: 大连理工大学, 2005. [9] ROBINSON J A. Process in removal of VOCs by combinations of discharge plasma and other physical-chemical methods[J]. IEEE Transactions, 1997,15(8): 1791-1802. [10] 黄虎宁. 刃-板电极脉冲电晕放电脱除NOx实验研究[D]. 大连: 大连理工大学, 2006. [11] 陈海丰. 针阵列双极电晕放电及其捕集颗粒物研究[D]. 大连: 大连海事大学, 2008. [12] 李坚, 豆宝娟, 梁文俊, 等. 喷嘴对板介质阻挡放电特性的实验研究[J]. 高电压技术, 2009, 35(5): 1099-1104. [13] 廖瑞金, 伍飞飞, 刘兴华, 等. 棒-板电极直流负电晕放电脉冲过程中的电子特性研究[J]. 电工技术学报, 2015, 30(10): 339-456. [14] 廖瑞金, 伍飞飞, 刘兴华, 等. 大气压直流正电晕放电暂态空间电荷分布仿真研究[J]. 物理学报, 2012, 61(24): 245-261. [15] LIU X H, WEI H, FAN Y, et al. Simulation and analysis of electron transport paramenters in air discharge[J]. High Voltage Engineering, 2011, 37(7): 1614-1619. [16] PANCHESHNYI S, NUDNOVA M, STARIKOVSKII A. development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2005, 71(1): 16-47.
计量
- 文章访问数: 2985
- HTML全文浏览数: 2902
- PDF下载数: 131
- 施引文献: 0