利用一氧化碳工业废气解毒铬渣的方法及条件优化

何力为, 李彬, 宁平, 张涛, 毕廷涛, 巩校, 闵熙泽. 利用一氧化碳工业废气解毒铬渣的方法及条件优化[J]. 环境工程学报, 2018, 12(9): 2617-2626. doi: 10.12030/j.cjee.201804127
引用本文: 何力为, 李彬, 宁平, 张涛, 毕廷涛, 巩校, 闵熙泽. 利用一氧化碳工业废气解毒铬渣的方法及条件优化[J]. 环境工程学报, 2018, 12(9): 2617-2626. doi: 10.12030/j.cjee.201804127
HE Liwei, LI Bin, NING Ping, ZHANG Tao, BI Tingtao, GONG Xiao, MIN Xize. Method and process optimization of applying CO waste gas to detoxify chromite ore processing residue[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2617-2626. doi: 10.12030/j.cjee.201804127
Citation: HE Liwei, LI Bin, NING Ping, ZHANG Tao, BI Tingtao, GONG Xiao, MIN Xize. Method and process optimization of applying CO waste gas to detoxify chromite ore processing residue[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2617-2626. doi: 10.12030/j.cjee.201804127

利用一氧化碳工业废气解毒铬渣的方法及条件优化

  • 基金项目:

    国家重点研发计划项目(2017YFC0210504)

    西部典型产业环境污染控制协同创新中心开放基金资助项目(XTCX-2014-01)

Method and process optimization of applying CO waste gas to detoxify chromite ore processing residue

  • Fund Project:
  • 摘要: 结合铬渣解毒及一氧化碳工业废气利用现状,提出采用一氧化碳工业废气解毒铬渣的方法。实验对反应温度、反应时间、铬渣质量、铬渣粒径等影响因素进行研究和筛选,用响应面法(RSM)分析了各因素对反应的影响及各因素之间交互性,建立反应的多元回归方程,并通过热力学分析进一步研究方法优越性的机理。结果表明:温度是该工艺铬渣解毒效率的关键影响因素,反应温度越高,解毒效果越好,优选反应温度范围350 ~ 400 ℃;浸出毒性目标值设定为1.0 mg·L-1,反应温度为400 ℃,铬渣质量为40 g,浸出毒性可降低至0.6 mg·L-1,还原率达99.85%;多元回归方程拟合性验证结果良好,RSM分析方法在条件优化中有较好的实用价值。
  • 加载中
  • [1] DARRIE G.Commercial extraction technology and process waste disposal in the manufacture of chromium chemicals from ore[J].Environmental Geochemistry & Health,2001,23(3):187-193 10.1023/A:1012295927081
    [2] 宁亚东, 李宏亮. 我国人为源CO排放量的估算研究[J]. 环境科学与技术,2015,38(12Q):397-402
    [3] 纪柱. 中国铬盐近五十年发展概况[J]. 无机盐工业,2010,42(12):1-15
    [4] 丁翼,纪柱. 铬化合物生产与应用[M]. 北京: 化学工业出版社,2003
    [5] WANG T, HE M, PAN Q.A new method for the treatment of chromite ore processing residues[J].Journal of Hazardous Materials,2007,149(2):440-444 10.1016/j.jhazmat.2007.04.009
    [6] 丁翼. 铬渣治理工作回顾及经验教训[J]. 化工环保,1994,14(4):210-215
    [7] KOWALSKI Z, GOLLINGERTARAJKO M.Environmental evaluation of different variants of the chromium compound production model using chromic waste[J].Waste Management,2003,23(8):771-783 10.1016/S0956-053X(02)00114-9
    [8] 纪柱. 铬铁矿无钙焙烧的反应机理[J]. 无机盐工业,1997,29(1):18-12
    [9] 陈新.从铬铁矿生产铬酸钠的二个新工艺[J].无机盐工业,1984,16(7):15-17
    [10] WALAWSKA B, KOWALSKI Z.Model of technological alternatives of production of sodium chromate (VI) with the use of chromic wastes[J].Waste Management,2000,20(8):711-723 10.1016/S0956-053X(00)00038-6
    [11] 李成梁, 孟菁华, 任杰,等. 铬渣处理方法研究现状[J]. 环境工程,2015,33(4):112-115
    [12] 盛灿文, 柴立元, 王云燕,等. 铬渣的湿法解毒研究现状及发展前景[J]. 工业安全与环保,2006,32(2):1-3 23674738
    [13] 景学森,杨亚提,蔡木林. 铬渣中Cr(Ⅵ)在盐溶液中的浸出机理[J]. 西北农林科技大学学报(自然科学版,2007,35(8):151-154
    [14] 张汉泉, 路漫漫, 付金涛. 干式还原法处理铬渣的机理及应用[J].化工环保,2014,34(6):532-534
    [15] 刘帅霞. 两段式还原工艺解毒铬渣技术研究[D].上海:东华大学,2013
    [16] WU C L, ZHANG H, HE P J, et al.Thermal stabilization of chromium slag by sewage sludge: Effects of sludge quantity and temperature[J].Journal of Iron and Steel Research International,2010,22(7):1110-1115 10.1016/S1001-0742(09)60225-4
    [17] SHI Y M, DU X H, MENG Q J, et al.Reaction process of chromium slag reduced by industrial waste in solid phase[J].Journal of Iron and Steel Research International,2007,14(1):12-15 10.1016/S1006-706X(07)60003-X
    [18] 石玉敏. 工业废渣高温还原解毒铬渣及终渣资源利用的研究[D]. 沈阳:东北大学,2006
    [19] 任庆玉. 铬渣的治理与综合利用[J]. 环境工程,1989,7(3):50-55
    [20] 黄本生, 李晓红, 王里奥. 化工铬渣冷固结球团还原解毒实验研究[J].上海环境科学,2003,22(12):911-917
    [21] 李先荣, 陈宁, 董明甫,等. 黄磷尾气解毒铬渣[J]. 无机盐工业,2014,46(12):54-56
    [22] 王一坤, 雷小苗, 邓磊,等. 可燃废气利用技术研究进展(Ⅰ):高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电,2014(7):1-9
    [23] VELASCO A, RAMIREZ M, HERNANDEZ S, et al.Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes[J].Journal of Hazardous Materials,2012,207-208(12):97-102 10.1016/j.jhazmat.2011.04.012
    [24] 陆军民. 工业CO废气回收利用现状与发展[J]. 化工科技市场,2001(11):22-25
    [25] MOON D H, WAZNE M, JAGUPILLA S C, et al.Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5)[J].Science of the Total Environment,2008,399(1):2-10 10.1016/j.scitotenv.2008.03.040
    [26] CHEN J, WANG Y, ZHOU S, et al.Reduction/immobilization processes of hexavalent chromium using metakaolin-based geopolymer[J].Journal of Environmental Chemical Engineering,2017,5(1):373-380 10.1016/j.jece.2016.11.028
    [27] FARMER J G, PATERSON E, BEWLEY R J F, et al.The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites[J].Science of the Total Environment,2006,360(1/2/3):90-97 10.1016/j.scitotenv.2005.08.027
    [28] 梁英教. 无机物热力学数据手册[M]. 沈阳:东北大学出版社,1993
    [29] 张大磊, 何圣兵, 蔡荣宝,等. 铬渣的热解无害化处理[J]. 环境污染与防治,2009,31(10):1-5
    [30] 周传典. 高炉炼铁生产技术手册 [M].北京: 冶金工业出版社,2002:104-106
    [31] SUN S, Jahanshahi S.Redox equilibria and kinetics of gas-slag reactions[J].Metallurgical & Materials Transactions B,2000,31(5):937-943 10.1007/s11663-000-0070-7
    [32] Li Y, FRUEHAN R J, LUCAS J A, et al.The chemical diffusivity of oxygen in liquid iron oxide and a calcium ferrite[J].Metallurgical & Materials Transactions B,2000,31(5):1059-1068 10.1007/s11663-000-0081-4
    [33] BONALDE A, HENRIQUEZ A, 255-1260 10.2355/isijinternational.45.1255
    [34] 赵玉祥, 沈颐身.现代冶金原理 [M].北京: 冶金工业出版社,1993
    [35] POUDEL B K, MARASINI N, TRAN T H, et al.Formulation, characterization and optimization of valsartan self-microemulsifying drug delivery system using statistical design of experiment[J].Chemical & Pharmaceutical Bulletin,2012,60(11):1409-1418 10.1248/cpb.c12-00502
    [36] LIONBERGER R A, LEE S L, LEE L M, et al.Quality by design: Concepts for ANDAs[J].AAPS Journal,2008,10(2):268-276 10.1208/s12248-008-9026-7
    [37] El-NAGGAR E A, EL-SHWEIHY N M, EL-EWASY S M.Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing streptomyces cavourensisstrain NEAE-42[J].BMC Microbiology,2016,16:217 10.1186/s12866-016-0830-4
    [38] HWANG C F, CHANG J H, HOUNG J Y, et al.Optimization of medium composition for improving biomass production of lactobacillus plantarum, Pi06 using the Taguchi array design and the Box-Behnken method[J].Biotechnology & Bioprocess Engineering,2012,17(4):827-834 10.1007/s12257-012-0007-4
    [39] SHEN N, WANG Q, QIN Y, et al.Optimization of succinic acid production from cane molasses by actinobacillus succinogenes, GXAS137 using response surface methodology (RSM)[J].Food Science & Biotechnology,2014,23(6):1911-1919 10.1007/s10068-014-0261-7
    [40] MORADPOUR Z, GHASEMIAN A, SAFARI A, et al.Isolation, molecular identification and statistical optimization of culture condition for a new extracellular cholesterol oxidase-producing strain using response surface methodology[J].Annals of Microbiology,2013,63(3):941-950 10.1007/s13213-012-0547-z
    [41] GUPTA B, POUDEL B K, PATHAK S, et al.Effects of formulation variables on the particle size and drug encapsulation of imatinib-loaded solid lipid nanoparticles[J].AAPS PharmSciTech,2016,78(3):652-662 10.1208/s12249-015-0384-z
    [42] [
  • 加载中
计量
  • 文章访问数:  1666
  • HTML全文浏览数:  1551
  • PDF下载数:  103
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20

利用一氧化碳工业废气解毒铬渣的方法及条件优化

  • 1. 昆明理工大学环境科学与工程学院,昆明 650093
  • 2. 云南省环境科学研究院,云南省重金属污染控制工程技术研究中心,昆明 650034
基金项目:

国家重点研发计划项目(2017YFC0210504)

西部典型产业环境污染控制协同创新中心开放基金资助项目(XTCX-2014-01)

摘要: 结合铬渣解毒及一氧化碳工业废气利用现状,提出采用一氧化碳工业废气解毒铬渣的方法。实验对反应温度、反应时间、铬渣质量、铬渣粒径等影响因素进行研究和筛选,用响应面法(RSM)分析了各因素对反应的影响及各因素之间交互性,建立反应的多元回归方程,并通过热力学分析进一步研究方法优越性的机理。结果表明:温度是该工艺铬渣解毒效率的关键影响因素,反应温度越高,解毒效果越好,优选反应温度范围350 ~ 400 ℃;浸出毒性目标值设定为1.0 mg·L-1,反应温度为400 ℃,铬渣质量为40 g,浸出毒性可降低至0.6 mg·L-1,还原率达99.85%;多元回归方程拟合性验证结果良好,RSM分析方法在条件优化中有较好的实用价值。

English Abstract

参考文献 (42)

目录

/

返回文章
返回