抗坏血酸对三价铁/过氧化钙体系降解头孢氨苄的影响

卢建, 黄天寅, 徐劼, 房聪, 陈家斌. 抗坏血酸对三价铁/过氧化钙体系降解头孢氨苄的影响[J]. 环境工程学报, 2018, 12(10): 2758-2767. doi: 10.12030/j.cjee.201803251
引用本文: 卢建, 黄天寅, 徐劼, 房聪, 陈家斌. 抗坏血酸对三价铁/过氧化钙体系降解头孢氨苄的影响[J]. 环境工程学报, 2018, 12(10): 2758-2767. doi: 10.12030/j.cjee.201803251
LU Jian, HUANG Tianyin, XU Jie, FANG Cong, CHEN Jiabin. Effect of ascorbic acid on the cefalexin degradation in Fe3+/calcium peroxide system[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2758-2767. doi: 10.12030/j.cjee.201803251
Citation: LU Jian, HUANG Tianyin, XU Jie, FANG Cong, CHEN Jiabin. Effect of ascorbic acid on the cefalexin degradation in Fe3+/calcium peroxide system[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2758-2767. doi: 10.12030/j.cjee.201803251

抗坏血酸对三价铁/过氧化钙体系降解头孢氨苄的影响

  • 基金项目:

    国家自然科学基金资助项目(51509175)

    苏州市民生科技项目(SS201666)

    江苏省研究生实践创新计划(SJCX17-0676)

Effect of ascorbic acid on the cefalexin degradation in Fe3+/calcium peroxide system

  • Fund Project:
  • 摘要: 通过添加抗坏血酸(AA)能够缓解铁离子形成沉淀和加速(Fe3+转化为Fe2+,催化CP产生活性氧物质(ROSs),对CFX降解起到促进作用。研究了Fe3+/AA/CP体系降解CFX的Fe3+浓度、AA浓度、CP浓度、初始pH等主要影响因素。结果表明:在Fe3+浓度0.60?mmol·L-1、AA浓度0.15?mmol·L-1、CP浓度0.144?g·L-1、CFX的初始浓度0.15?mmol·L-1和初始pH=3.00的室温条件下,20 min内CFX的降解率可达到100%。随着初始pH升高,CFX的降解率随之降低。反应过程中降解CFX的活性物质为羟基自由基(HO·)和超氧自由基(O2-·),其中HO·对CFX降解起到主导作用。水中阴离子的影响表明,SO42-、Cl-对CFX的降解影响较小;但HCO3-对CFX的降解有明显的抑制作用。在处理成分较复杂的实际养殖废水实验中,发现只有提高药剂量才能达到有效降解实际废水中头孢氨苄的目的。
  • 加载中
  • [1] DODD M C, RENTSCH D, SINGER H P, et al.Transformation of β-lactam antibacterial agents during aqueous ozonation: Reaction pathways and quantitative bioassay of biologically-active oxidation products[J].Environmental Science & Technology,2010,44(15):5940-5948 10.1021/es101061w
    [2] CHEN J, SUN P, ZHANG Y, et al.Multiple roles of Cu(II) in catalyzing hydrolysis and oxidation of β-lactam antibiotics[J].Environmental Science & Technology,2016,50(22):12156-12165 10.1021/acs.est.6b02702
    [3] KIM S D, CHO J, KIM I S, et al.Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and wastewaters[J].Water Research,2007,41(5):1013-1021 10.1016/j.watres.2006.06.034
    [4] CHA J M, YANG S, CARLSON K H, et al.Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry[J].Journal of Chromatography A,2006,1115(1/2):46-57 10.1016/j.chroma.2006.02.086
    [5] GULKOWSKA A, HE Y, SO M K, et al.The occurrence of selected antibiotics in Hong Kong coastal waters[J].Marine Pollution Bulletin,2007,54(8):1287-1293
    [6] JIANG M, WANG L, JI R, et al.Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment[J].Chemosphere,2010,80(11):1399-1405 10.1016/j.chemosphere.2010.05.048
    [7] NAKADA N, SHINOHARA H, MURATA A, et al.Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant[J].Water Research,2007,41(19):4373-4382 10.1016/j.watres.2007.06.038
    [8] YOON Y, WESTERHOFF P, SNYDER S A, et al.Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products[J].Journal of Membrane Science,2006,270(1/2):88-100 10.1016/j.memsci.2005.06.045
    [9] RADJENVIC J, PETROVIC M, VENTURA F, et al.Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment[J].Water Research,2008,42(14):3601-3610 10.1016/j.watres.2008.05.020
    [10] SUAREZ S, CARBALLA M, OMIL F, et al.How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters[J].Reviews in Environmental Science and Bio/Technology,2008,7(2):125-138
    [11] 柴玉峰, 张玉秀, 陈梅雪,等. 冀西北典型北方小城镇污水处理厂中抗生素的分布和去除[J]. 环境科学,2018,39(6):2724-2731 10.13227/j.hjkx.201710104
    [12] 时红蕾,王晓昌,李倩. 人粪便好氧堆肥过程中典型抗生素的消减特性[J]. 环境科学,2018,39(7):3434-3442 10.13227/j.hjkx.201711182
    [13] QIAN Y, ZHOU X, ZHANG Y, et al.Performance and properties of nanoscale calcium peroxide for toluene removal[J].Chemosphere.2013,91(5):717-723 10.1016/j.chemosphere.2013.01.049
    [14] MA Y , ZHANG B T , ZHAO L , et al.Study on the generation mechanism of reactive oxygen species on calcium peroxide by chemiluminescence and UV-visible spectra[J].Luminescence,2010,22(6):575-580
    [15] NORTHUP A, CASSIDY D.Calcium peroxide (CaO2) for use in modified Fenton chemistry[J].Journal of Hazardous Materials,2008,152(3):1164-1170 10.1016/j.jhazmat.2007.07.096
    [16] BOGAN B W , TRBOVIC V , PATEREK J R, et al.nclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils[[J].Chemosphere, 2003,50 (1):15-21 10.1016/S0045-6535(02)00490-3
    [17] QIAN Y, ZHOU X, ZHANG Y, et al.Performance of α-methylnaphthalene degradation by dual oxidant of persulfate/calcium peroxide: Implication for ISCO[J].Chemical Engineering Journal,2015,279:538-546 10.1016/j.cej.2015.05.053
    [18] JONSSON S, PERSSON Y, FRANKKI S, et al.Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties[J].Journal of Hazardous Materials,2007,149(1):86-96 10.1016/j.jhazmat.2007.03.057
    [19] FLOTRON V, DELTEIL C, PADELLEC Y, et al.Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton's reagent process[J].Chemosphere,2005,59(10):1427-1437 10.1016/j.chemosphere.2004.12.065
    [20] NEYENS E, BAEYENS J.A review of classic Fenton's peroxidation as an advanced oxidation technique[J].Journal of Hazardous Materials,2003,98(1):33-50 10.1016/S0304-3894(02)00282-0
    [21] RASTOGI A, AL-ABED S R, DIONYSIOU D D, et al.Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J].Water Research,2009,43(3):684-694 10.1016/j.watres.2008.10.045
    [22] OSEPH J, PIGNATELL O , ESTHER , et al.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J].Critical Reviews in Environmental Science & Technology,2006,36(1):1-84
    [23] DE LUCA A, DANTAS R F, ESPLUGAS S, et al.Assessment of iron chelates efficiency for photo-Fenton at neutral pH[J].Water Research,2014,61:232-242 10.1016/j.watres.2014.05.033
    [24] LI Y C , BACHAS L G , BHATTACHARYYA D.Kinetics studies of trichlorophenol destruction by chelate-based Fenton reaction[J].Environmental Engineering Science,2005,22(6):756-771 10.1089/ees.2005.22.756
    [25] FUKUCHI S, NISHIMOTO R, FUKUSHIMA M, et al.Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite[J].Applied Catalysis B: Environmental,2014,147:411-419
    [26] LIN Y, LIANG C.Carbon tetrachloride degradation by alkaline ascorbic acid solution[J].Environmental Science & Technology,2013,47(7):3299-3307 10.1021/es304441e
    [27] XUE Y , GU X , LU S, et al.The destruction of benzene by calcium peroxide activated with Fe(II) in water.[J].Chemical Engineering Journal,2016,302:187-193 10.1016/j.cej.2016.05.016
    [28] BOLOBAJEV J , TRAPIDO M , GOI A.Interaction of tannic acid with ferric iron to assist 2,4,6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment[J].Applied Catalysis B:Environmental,2016,187:75-82 10.1016/j.apcatb.2016.01.015
    [29] LEWIS S, LYNCH A , BACHAS L , et al.Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems[J].Environmental Engineering Science,2009,26(4):849-859 10.1089/ees.2008.0277
    [30] MARC P B , CELIA B , ANDREW C , et al.Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment [J].Critical Reviews in Food Science & Nutrition,2011,51(6):479-498
    [31] BOLOBAJEV J , TRAPIDO M , GOI A.Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid[J].Chemical Engineering Journal,2015,281:566-574 10.1016/j.cej.2015.06.115
    [32] 张乃东,郑威,彭永臻.褪色光度法测定芬顿体系中产生的羟自由基[J]. 分析化学,2003,31(5):552-554
    [33] TROVO A G , SENIVS P , PALMIST E, et al.Decolorization kinetics of acid blue 161 by solid peroxides catalyzed by iron in aqueous solution[J].Desalination & Water Treatment,2015,1:1-13 10.1080/19443994.2015.1098573
    [34] GORMAN J E, CLYDESDALE F M.The behavior and stability of iron-ascorbate complexes in solution[J].Journal of Food Science,1983,48(4):1217-1220 10.1111/j.1365-2621.1983.tb09195.x
    [35] DE LAAT J, LE T G.Kinetics and modeling of the Fe (III)/H2O2 system in the presence of sulfate in acidic aqueous solutions[J].Environmental Science & Technology,2005,39:1811-1818 10.1021/es0493648
    [36] BURKITT M J.Chemical, biological and medical controversies surrounding the Fenton reaction[J].Progress in Reaction Kinetics & Mechanism,2003,28(1):75-103 10.3184/007967403103165468
    [37] KOMWEITZ H, MEYERSTEIN D.The plausible role of carbonate in photo-catalytic water oxidation processes[J].Physical Chemistry Chemical Physics,2016,18(16):11069-11072 10.1039/C5CP07389H
    [38] ZHANG X, GU X, LU S, et al.Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid[J].Frontiers of Environmental Science & Engineering,2016,10(3):502-512
    [39] BUXTON G V , GREENSTOCK C L , HELMAN W P , et al.Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J].Journal of Physical & Chemical Reference Data, 1988,17(2):513-886 10.1063/1.555805
    [40] LIAO C H, KANG S F, WU F A.Hydroxyl radical scavenging role of chloride and bicarbonate ions in the HO/UV process[J].Chemosphere,2001,44(5):1193-1200 10.1016/S0045-6535(00)00278-2
    [41] TANG W Z, HUANG C P. 2,4-dichlorophenol oxidation kinetics by Fenton’s reagent[J].Environmental Technology Letters,1996,17(12):1371-1378
  • 加载中
计量
  • 文章访问数:  3100
  • HTML全文浏览数:  2959
  • PDF下载数:  166
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

抗坏血酸对三价铁/过氧化钙体系降解头孢氨苄的影响

  • 1. 苏州科技大学环境科学与工程学院,苏州 215009
基金项目:

国家自然科学基金资助项目(51509175)

苏州市民生科技项目(SS201666)

江苏省研究生实践创新计划(SJCX17-0676)

摘要: 通过添加抗坏血酸(AA)能够缓解铁离子形成沉淀和加速(Fe3+转化为Fe2+,催化CP产生活性氧物质(ROSs),对CFX降解起到促进作用。研究了Fe3+/AA/CP体系降解CFX的Fe3+浓度、AA浓度、CP浓度、初始pH等主要影响因素。结果表明:在Fe3+浓度0.60?mmol·L-1、AA浓度0.15?mmol·L-1、CP浓度0.144?g·L-1、CFX的初始浓度0.15?mmol·L-1和初始pH=3.00的室温条件下,20 min内CFX的降解率可达到100%。随着初始pH升高,CFX的降解率随之降低。反应过程中降解CFX的活性物质为羟基自由基(HO·)和超氧自由基(O2-·),其中HO·对CFX降解起到主导作用。水中阴离子的影响表明,SO42-、Cl-对CFX的降解影响较小;但HCO3-对CFX的降解有明显的抑制作用。在处理成分较复杂的实际养殖废水实验中,发现只有提高药剂量才能达到有效降解实际废水中头孢氨苄的目的。

English Abstract

参考文献 (41)

目录

/

返回文章
返回