Al13的分子学及其在环境工程中的应用

王东升, 安广宇, 刘丽冰, 王品, 肖峰, 杨成刚. Al13的分子学及其在环境工程中的应用[J]. 环境工程学报, 2018, 12(6): 1565-1584. doi: 10.12030/j.cjee.201803169
引用本文: 王东升, 安广宇, 刘丽冰, 王品, 肖峰, 杨成刚. Al13的分子学及其在环境工程中的应用[J]. 环境工程学报, 2018, 12(6): 1565-1584. doi: 10.12030/j.cjee.201803169
WANG Dongsheng, AN Guangyu, LIU Libing, WANG Pin, XIAO Feng, YANG Chenggang. Molecules of Al13 and its application in environmental engineering[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1565-1584. doi: 10.12030/j.cjee.201803169
Citation: WANG Dongsheng, AN Guangyu, LIU Libing, WANG Pin, XIAO Feng, YANG Chenggang. Molecules of Al13 and its application in environmental engineering[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1565-1584. doi: 10.12030/j.cjee.201803169

Al13的分子学及其在环境工程中的应用

  • 基金项目:

    国家自然科学基金资助项目(21507149,51338010)

Molecules of Al13 and its application in environmental engineering

  • Fund Project:
  • 摘要: Al13([AlO4Al12(OH)24(H2O)12]7+)是Al(III)水解过程中重要的中间产物,是一种尺寸介于纳米级别的簇合化合物。由于其独特的形态结构和物化特性,Al13制品在工业生产和环境工程中有着广泛的应用前景。通过Al13的基础理论性研究,包括形态转化与微观界面机制等分子学行为的解析,可以揭示其水解生成的过程以及在溶液中的稳定性等重要的物化性质,为制备高纯Al13试剂以及优化实际工程应用条件提供有效的指导。同时,研究Al13转化生成Al30和Al13聚集体等形态的微观机制,可以进一步开发新型多功能环境工程应用材料,提升Al系试剂的应用范围和效果。在全面阐述Al13的分子学行为的基础上,论述分析了Al13制品在环境工程中的应用情况,包括水处理中混凝过程的作用机理和适用范围、污泥处理中的调理脱水效果等,并提出了相关研究存在的问题和未来研究的方向。
  • 加载中
  • [1] BOTTERO J Y, CASES J M, FIESSINGER F, et al.Studies of hydrolyzed aluminum chloride solutions. 1.Nature of aluminum species and composition of aqueous solutions[J].Journal of Physical Chemistry,1980,84(22):2933-2939 10.1021/j100459a021
    [2] CASEY W H.Large aqueous aluminum hydroxide molecules[J].Chemical Reviews,2006,106(1):1-16 10.1021/cr040095d
    [3] BOTTERO J Y, TCHOUBAR D, CASES J M, et al.Investigation of the hydrolysis of aqueous solutions of aluminum chloride. 2.Nature and structure by small-angle X-ray scattering[J].Journal of Physical Chemistry,1982,86(18):3667-3673 10.1021/j100215a034
    [4] LETTERMAN R D, AMIRTHARAJAH A, O’MELIA C R.Coagulation and flocculation in water quality and treatment[M]//SINGER P, RECKHOW D.A Handbook of Community Water Supplies.New York: American Water Works Association, McGraw-Hill,1999
    [5] SIVAIAH M V, PETIT S, BRENDLE J, et al.Rapid synthesis of aluminium polycations by microwave assisted hydrolysis of aluminium via decomposition of urea and preparation of Al-pillared montmorillonite[J].Applied Clay Science,2010,48(1/2):138-145 10.1016/j.clay.2009.11.016
    [6] PARKER D R, BERTSCH P M.Identification and quantification of the "Al13" tridecameric aluminum polycation using ferron[J].Environmental Science & Technology,1992,26(5):908-914 10.1021/es00029a006
    [7] REUSSER D, CASEY W H, NAVROTSKY A.Energetic insight into the formation of solids from aluminum polyoxocations[J].Angewandte Chemie International Edition,2015,54(32):9253-9256 10.1002/anie.201503544
    [8] CASEY W H, PHILLIPS B L, KARLSSON M, et al.Rates and mechanisms of oxygen exchanges between sites in the AlO4Al12(OH)24(H2O)127+(aq) complex and water: Implications for mineral surface chemistry[J].Geochimica et Cosmochimica Acta,2000,64(17):2951-2964 10.1016/S0016-7037(00)00395-1
    [9] QIAN Z, FENG H, YANG W, et al.Theoretical investigation of water exchange on the nanometer-sized polyoxocation AlO4Al12(OH)24(H2O)127+(Keggin-Al13) in aqueous solution[J].Journal of the American Chemical Society,2008,130(44):14402-14403 10.1021/ja805503t
    [10] JIN X, WU H, JIANG X, et al.Effect of fluorine substitution on structures and reactivity of Keggin-Al13 in aqueous solution: an exploration of the fluorine substitution mechanism[J].Physical Chemistry Chemical Physics,2014,16(22):10566-10572 10.1039/C3CP55290J
    [11] ALLOUCHE L, TAULELLE F.Fluorination of the ε-Keggin Al13 polycation[J].Chemical Communications,2003(16):2084-2085 10.1039/B303585A
    [12] WANG X, ZHANG G, FU X, et al.Aggregation and dissociation of aqueous Al13 induced by fluoride substitution[J].Environmental Science & Technology,2017,51(11)6279-6287 10.1021/acs.est.6b05876
    [13] PHILLIPS B L, CASEY W H, KARLSSON M.Bonding and reactivity at oxide mineral surfaces from model aqueous complexes[J].Nature,2000,404(6776):379-382 10.1038/35006036
    [14] ABEYSINGHE S, UNRUH D K, FORBES T Z.Crystallization of Keggin-type polyaluminum species by supramolecular interactions with disulfonate anions[J].Crystal Growth & Design,2012,12(4):2044-2051 10.1021/cg3000087
    [15] TANG H, WANG D, GE X.Environmental nano-pollutants (ENP) and micro-interfacial processes[J].Water Science and Technology,2004,50(12):103-109
    [16] WANG D, WANG S, HUANG C, et al.Hydrolyzed Al (III) clusters: Speciation stability of nano-Al13[J].Journal of Environmental Sciences,2011,23(5):705-710 10.1016/S1001-0742(10)60464-0
    [17] 初永宝, 高宝玉, 岳钦艳, 等. 聚合氯化铝中 Al13 形态水解稳定性的研究[J]. 环境科学与技术,2007,30(12):8-9.
    [18] FURRER G, GFELLER M, WEHRLI B.On the chemistry of the Keggin Al13 polymer: Kinetics of proton-promoted decomposition[J].Geochimica et Cosmochimica Acta,1999,63(19):3069-3076 10.1016/S0016-7037(99)00234-3
    [19] CASEY W H, PHILLIPS B L, KARLSSON M, et al.Rates and mechanisms of oxygen exchanges between sites in the AlO4Al12(OH)24(H2O)127+(aq) complex and water: Implications for mineral surface chemistry[J].Geochimica et Cosmochimica Acta,2000,64(17):2951-2964 10.1016/S0016-7037(00)00395-1
    [20] BI Z, CHEN Y, WANG S, et al.Hydrolyzed Al (III)-clusters.II: Speciation transformation and stability of Al13 aggregates[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,440:59-62. 10.1016/j.colsurfa.2012.09.055
    [21] LETTERMAN R D, ASOLEKAR S R.Surface ionization of polynuclear species in Al (III) hydrolysis:I.Titration results[J].Water Research,1990,24(8):931-939
    [22] LIN J L, CHIN C J M, HUANG C, et al.Coagulation behavior of Al13 aggregates[J].Water Research,2008,42(16):4281-4290 10.1016/j.watres.2008.07.028
    [23] BARDLEY S M, KYDD R A, HOWE R F.The structure of Al gels formed through the base hydrolysis of Al3+ aqueous solutions[J].Journal of Colloid and Interface Science,1993,159(2):405-412 10.1006/jcis.1993.1340
    [24] HUANG P M, WANG M K, KAMPF N, et al.Aluminum hydroxides[M]//DIXON J B, SCHULZE D G.Soil Mineralogy with Environmental Applications.Madison: Soil Science Society of America,2002:261-289
    [25] LIN J L, HUANG C, Chin C J M, et al.The origin of Al (OH)3-rich and Al13-aggregate flocs composition in PACl coagulation[J].Water Research,2009,43(17):4285-4295 10.1016/j.watres.2009.06.023
    [26] CASEY W H, PHILLIPS B L, FURRER G.Aqueous aluminum polynuclear complexes and nanoclusters: A review[J].Reviews in Mineralogy and Geochemistry,2001,44(1):167-190 10.2138/rmg.2001.44.05
    [27] AMIRBAHMAN A, GFELLER M, FURRER G.Kinetics and mechanism of ligand-promoted decomposition of the Keggin Al13 polymer[J].Geochimica et Cosmochimica Acta,2000,64(5):911-919 10.1016/S0016-7037(99)00377-4
    [28] MOLIS E, THOMAS F, BOTTERO J Y, et al.Chemical and structural transformation of aggregated Al13 polycations, promoted by salicylate ligand[J].Langmuir,1996,12(13):3195-3200 10.1021/la951005q
    [29] YE C, WANG D, WU X, et al.K-value-based ferron assay and its application[J].Journal of Colloid and Interface Science,2009,335(1):44-49 10.1016/j.jcis.2009.02.056
    [30] WANG M, MUHAMMED M.Novel synthesis of Al13-cluster based alumina materials[J].Nanostructured Materials,1999,11(8):1219-1229 10.1016/S0965-9773(99)00412-2
    [31] TSUCHIDA T, KITAMURA K, INAGAKI M.Formation of crystalline sulfates from Al13 polymer solutions: Effect of washing on the transformation of type I to type II crystals[J].Journal of Materials Chemistry,1995,5(8):1233-1236 10.1039/JM9950501233
    [32] ALLOUCHE L, TAULELLE F.Conversion of Al13 Keggin ε into Al30: A reaction controlled by aluminum monomers[J].Inorganic Chemistry Communications,2003,6(9):1167-1170 10.1016/S1387-7003(03)00166-7
    [33] ALLOUCHE L, GERARDIN C, LOISEAU T, et al.Al30: A giant aluminum polycation[J].Angewandte Chemie,2000,112(3):521-524
    [34] CHEN Z, LUAN Z, FAN J, et al.Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,292(2/3):110-118 10.1016/j.colsurfa.2006.06.005
    [35] YANG W J, QIAN Z S, LU B M, et al.Density functional theory study and kinetic analysis of the formation mechanism of Al30O8(OH)56(H2O)2618+(Al30) in aqueous solution[J].Geochimica et Cosmochimica Acta,2010,74(4):1220-1229 10.1016/j.gca.2009.11.015
    [36] ROWSELL J, NAZAR L F.Speciation and thermal transformation in alumina sols: Structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)26] 18+ and its δ-Keggin moieté[J].Journal of the American Chemical Society,2000,122(15):3777-3778 10.1021/ja993711+
    [37] SHAFRAN K L, PERRY C C.A systematic investigation of aluminium ion speciation at high temperature.Part. 1.Solution studies[J].Dalton Transactions,2005(12):2098-2105 10.1039/B502097B
    [38] 高宝玉, 岳钦艳, 王炳建, 等. 高Al13纳米聚合氯化铝的结构表征及混凝效果[J]. 中国环境科学,2003,23(6):657-660
    [39] WU X, GE X, WANG D, et al.Distinct coagulation mechanism and model between alum and high Al13-PACl[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,305(1/2/3):89-96 10.1016/j.colsurfa.2007.04.046
    [40] 刘文, 王学军. 中国水体颗粒物数据库的研制[J]. 环境化学,1995,14(6):513-517
    [41] TADROS T.General principles of colloid stability and the role of surface forces[M]//TADROS T.Colloid Stability: The Role of Surface Forces (Part I).Weinheim: Wiley-VCH Verlag Gmbh & Co.kGaA,2007:1-22
    [42] WIESE G R, HEALY T W.Effect of particle size on colloid stability[J].Transactions of the Faraday Society,1970,66:490-499 10.1039/TF9706600490
    [43] HOGG R, HEALY T W, FUERSTENAU D W.Mutual coagulation of colloidal dispersions[J].Transactions of the Faraday Society,1966,62:1638-1651 10.1039/TF9666201638
    [44] DENTEL S K.Application of the precipitation-charge neutralization model of coagulation[J].Environmental Science & Technology,1988,22(7):825-832 10.1021/es00172a013
    [45] WU X, GE X, WANG D, et al.Distinct coagulation mechanism and model between alum and high Al13-PACl[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,305(1/2/3):89-96 10.1016/j.colsurfa.2007.04.046
    [46] 高宝玉,初永宝,岳钦艳,等.Al13的分离方法及混凝效果动态过程的研究[J]. 环境科学学报,2005,25(6):767-772
    [47] YU W, GREGORY J, CAMPOS L C, et al.Dependence of floc properties on coagulant type, dosing mode and nature of particles[J].Water Research,2015,68:119-126 10.1016/j.watres.2014.09.045
    [48] HU C, CHEN G, LIU H, et al.Characterization of flocs generated by preformed and in situ formed Al13 polymer[J].Chemical Engineering Journal,2012,197:10-15 10.1016/j.cej.2012.05.041
    [49] GAO B Y, CHU Y B, YUE Q Y, et al.Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content[J].Journal of Environmental Management,2005,76(2):143-147 10.1016/j.jenvman.2004.12.006
    [50] YANG Z, GAO B, YUE Q.Coagulation performance and residual aluminum speciation of Al2 (SO4) 3 and polyaluminum chloride (PAC) in Yellow River water treatment[J].Chemical Engineering Journal,2010,165(1):122-132 10.1016/j.cej.2010.08.076
    [51] PRINCEN L H, DEVENA-PEPLINSKI M.Effect of particle size on the mutual flocculation between zinc oxide and titanium dioxide[J].Journal of Colloid Science,1964,19(9):786-797 10.1016/0095-8522(64)90055-8
    [52] YE C, WANG D, SHI B, et al.Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,294(1/2/3):163-173 10.1016/j.colsurfa.2006.08.005
    [53] SHI B, WEI Q, WANG D, et al.Coagulation of humic acid: The performance of preformed and non-preformed Al species[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,296(1/2/3):141-148 10.1016/j.colsurfa.2006.09.037
    [54] ZHAO H, HU C, LIU H, et al.Role of aluminum speciation in the removal of disinfection byproduct precursors by a coagulation process[J].Environmental Science & Technology,2008,42(15):5752-5758 10.1021/es8006035
    [55] ZHANG H, ZHANG Y, SHI Q, et al.Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry[J].Water Research,2012,46(16):5197-5204 10.1016/j.watres.2012.07.004
    [56] YANG Z, GAO B, YUE Q.Coagulation performance and residual aluminum speciation of Al2 (SO4) 3 and polyaluminum chloride (PAC) in Yellow River water treatment[J].Chemical Engineering Journal,2010,165(1):122-132 10.1016/j.cej.2010.08.076
    [57] GAO B Y, CHU Y B, YUE Q Y, et al.Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content[J].Journal of Environmental Management,2005,76(2):143-147 10.1016/j.jenvman.2004.12.006
    [58] HU C, LIU H, QU J, et al.Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control[J].Environmental Science & Technology,2006,40(1):325-331 10.1021/es051423+
    [59] YAN M, WANG D, NI J, et al.Mechanism of natural organic matter removal by polyaluminum chloride:Effect of coagulant particle size and hydrolysis kinetics[J].Water Research,2008,42(13):3361-3370 10.1016/j.watres.2008.04.017
    [60] LETTERMAN R D, DRISCOLL C T.Survey of residual aluminum in filtered water[J].American Water Works Association Journal,1988,80(4):154-158
    [61] 邓慧萍. 对饮用水中剩余铝问题的研究和探讨[J]. 净水技术,1995(4):11-14
    [62] 刘艳静,徐慧,朱利军,等.不同有机物对混凝过程和余铝的影响[J].环境工程学报,2015,9(6):2660-2666
    [63] 高雅,毕哲,王东升,等.优化混凝处理低温低浊黄河水及对余铝的控制[J].环境工程学报20137(10)3737-3742
    [64] DUAN S, XU H, XIAO F, et al.Effects of Al species on coagulation efficiency, residual Al and floc properties in surface water treatment[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,459:14-21 10.1016/j.colsurfa.2014.06.040
    [65] JIAO R, XU H, XU W, et al.Influence of coagulation mechanisms on the residual aluminum:The roles of coagulant species and MW of organic matter[J].Journal of Hazardous Materials,2015,290:16-2 10.1016/j.jhazmat.2015.02.041
    [66] 马明, 胡文涛. 含氟废水处理方法综述[J]. 江西化工,2011(1):34-36
    [67] MALHBTRA S, KULKARNI D N, PANDE S P.Effectiveness of poly aluminum chloride (PAC) vis-a-vis alum in the removal of fluorides and heavy metals[J].Journal of Environmental Science & Health Part A,1997,32(9/10):2563-2574 10.1080/10934529709376703
    [68] GONG L, FENG L.Preparation and defluorination mechanism of a novel copolymerized hydroxyapatite–aluminium chloride material[J].RSC Advances,2015,5(115):95334-95343 10.1039/C5RA20372D
    [69] 姚艳,杨道武,刘义,等. 石灰乳-聚合氯化铝处理高含氟废水的研究[J]. 工业水处理,2011,31(8):42-45
    [70] 徐振佳,张雪英,周俊,等. 城市污水厂剩余污泥脱水技术综述[J]. 净水技术,2018(2):38-44
    [71] 牛美青,张伟军,王东升,等. 不同混凝剂对污泥脱水性能的影响研究[J]. 环境科学学报,2012,32(9):2126-2133
    [72] MIKKELSEN L H, KEIDING K.Physico-chemical characteristics of full scale sewage sludges with implications to dewatering[J].Water Research,2002,36(10):2451-2462 10.1016/S0043-1354(01)00477-8
    [73] CAO B, ZHANG W, WANG Q, et al.Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation[J].Water Research,2016,105:615-624 10.1016/j.watres.2016.09.016
    [74] 郦光梅,金宜英,李欢,等. 无机调理剂对污泥建材化的影响研究[J]. 中国给水排水,2006,22(13):82-84
  • 加载中
计量
  • 文章访问数:  8268
  • HTML全文浏览数:  7780
  • PDF下载数:  609
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-06-18

Al13的分子学及其在环境工程中的应用

  • 1. 中国科学院生态环境研究中心,中国科学院饮用水科学与技术重点实验室,北京 100085
  • 2. 中国科学院大学,北京 100049
  • 3. 环境保护部核与辐射安全中心,北京 100082
基金项目:

国家自然科学基金资助项目(21507149,51338010)

摘要: Al13([AlO4Al12(OH)24(H2O)12]7+)是Al(III)水解过程中重要的中间产物,是一种尺寸介于纳米级别的簇合化合物。由于其独特的形态结构和物化特性,Al13制品在工业生产和环境工程中有着广泛的应用前景。通过Al13的基础理论性研究,包括形态转化与微观界面机制等分子学行为的解析,可以揭示其水解生成的过程以及在溶液中的稳定性等重要的物化性质,为制备高纯Al13试剂以及优化实际工程应用条件提供有效的指导。同时,研究Al13转化生成Al30和Al13聚集体等形态的微观机制,可以进一步开发新型多功能环境工程应用材料,提升Al系试剂的应用范围和效果。在全面阐述Al13的分子学行为的基础上,论述分析了Al13制品在环境工程中的应用情况,包括水处理中混凝过程的作用机理和适用范围、污泥处理中的调理脱水效果等,并提出了相关研究存在的问题和未来研究的方向。

English Abstract

参考文献 (74)

目录

/

返回文章
返回