粉煤灰、电石渣及其配合物碳酸化特性

任国宏, 廖洪强, 吴海滨, 高宏宇, 闫志华, 程芳琴. 粉煤灰、电石渣及其配合物碳酸化特性[J]. 环境工程学报, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119
引用本文: 任国宏, 廖洪强, 吴海滨, 高宏宇, 闫志华, 程芳琴. 粉煤灰、电石渣及其配合物碳酸化特性[J]. 环境工程学报, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119
REN Guohong, LIAO Hongqiang, WU Haibin, GAO Hongyu, YAN Zhihua, CHENG Fangqin. Carbonation characteristics of fly ash, carbide slag and their mixtures[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119
Citation: REN Guohong, LIAO Hongqiang, WU Haibin, GAO Hongyu, YAN Zhihua, CHENG Fangqin. Carbonation characteristics of fly ash, carbide slag and their mixtures[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119

粉煤灰、电石渣及其配合物碳酸化特性

  • 基金项目:

    山西省重点研发计划重点项目(201603D312003)

Carbonation characteristics of fly ash, carbide slag and their mixtures

  • Fund Project:
  • 摘要: 为了促进粉煤灰和电石渣建材化高效利用和协同矿化CO2减排,研究了粉煤灰、电石渣及其配合物的碳酸化特性。实验采用pH在线测试方法分别对粉煤灰、电石渣以及两者配合物的碳酸化过程的pH进行在线测试,并对原料和产物进行XRD、TGA和SEM表征。结果表明:相同条件下,粉煤灰碳酸化浆液pH降到7.0的平均速度约为电石渣的51倍;与等量电石渣单独碳酸化相比,粉煤灰与电石渣按照4:1(质量比)复配碳酸化pH降低到7.0的速度较纯电石渣提高了近5.6倍,且在相同电石渣配量的条件下,粉煤灰-电石渣复配料比碳酸钙-电石渣复配料的碳酸化反应完成时间缩短了31.6%,说明电石渣与粉煤灰复配后进行碳酸化反应具有明显协同促进作用。TGA分析表明,纯粉煤灰和纯电石渣的固碳率分别约为2%和61.3%,粉煤灰与电石渣复配料的固碳率较等量单一电石渣和粉煤灰的固碳率之和的计算值提高了19.6%。SEM分析表明,粉煤灰与电石渣复配料碳酸化产物碳酸钙颗粒在粉煤灰表面呈现异位分散附着形态,而单一电石渣碳酸化产物碳酸钙则在电石渣颗粒表面呈现原位聚集附着形态。这可能是复配料固碳率提高的主要原因。
  • 加载中

    1. 马钊,王传琴,李广学,等.从粉煤灰中提取氧化铝的研究现状[J].现代化工,2015,35(3):34-36. [CrossRef]
    2. 全浩,温雪峰,郭琳琳,等.CO2捕集和地下封存技术的现状及发展趋势(一)[J]. 煤炭工程,2007(12):75-79.
    3. JEW A D, RUPP E C, GEATCHES D L, et al. Mercury interaction with the fine fraction of coal-combustion fly ash in a simulated coal power plant flue gas stream[J]. Energy & Fuels,2015,29(9):564–571. [CrossRef]
    4. 熊传胜,王伟,朱琦,等.以钢渣和粉煤灰为掺合料的水泥基泡沫混凝土的研制[J]. 江苏建材,2009(3):23-25.
    5. FLORIN N, FENNELL P. Synthetic CaO-based sorbent for CO2 capture[J]. Energy Procedia,2011(4):830-838. [CrossRef]
    6. 潘钟,罗津晶,薛姗姗,等.粉煤灰利用的回顾与展望[J].环境卫生工程,2008,16(1):19-22.
    7. 潘凯.钢渣碳酸化固定二氧化碳及制备建材产品应用研究[D].南宁:广西大学,2014.
    8. 何梓睿.水蒸气对电石渣循环煅烧/碳酸化捕集CO2特性影响研究[D]. 济南:山东大学,2016.
  • [1] 马钊,王传琴,李广学,等.从粉煤灰中提取氧化铝的研究现状[J].现代化工,2015,35(3):34-36 10.3969/j.issn.1008-1143.2017.07.002
    [2] 全浩,温雪峰,郭琳琳,等.CO2捕集和地下封存技术的现状及发展趋势(一)[J]. 煤炭工程,2007(12):75-79
    [3] JEW A D, RUPP E C, GEATCHES D L, et al.Mercury interaction with the fine fraction of coal-combustion fly ash in a simulated coal power plant flue gas stream[J].Energy & Fuels,2015,29(9):564–571 10.1021/acs.energyfuels.5b01253
    [4] 熊传胜,王伟,朱琦,等.以钢渣和粉煤灰为掺合料的水泥基泡沫混凝土的研制[J]. 江苏建材,2009(3):23-25
    [5] FLORIN N, FENNELL P.Synthetic CaO-based sorbent for CO2 capture[J].Energy Procedia,2011(4):830-838 10.1021/ef100447c
    [6] 潘钟,罗津晶,薛姗姗,等.粉煤灰利用的回顾与展望[J].环境卫生工程,2008,16(1):19-22
    [7] 潘凯.钢渣碳酸化固定二氧化碳及制备建材产品应用研究[D].南宁:广西大学,2014
    [8] 何梓睿.水蒸气对电石渣循环煅烧/碳酸化捕集CO2特性影响研究[D]. 济南:山东大学,2016
  • 期刊类型引用(17)

    1. 高林君,白清才,杜松. 粉煤灰吸收剂固碳降碱工艺研究. 低碳化学与化工. 2024(05): 88-95 . 百度学术
    2. 宋夏,赵传文,宋雨佳,郭亚飞,孔啸. 钢渣-粉煤灰固废复合碱激发胶凝材料矿化养护. 洁净煤技术. 2024(10): 88-98 . 百度学术
    3. 田都喜,于世卿,黄启龙,赵秀松,胡海华,李豪. 矿物发热剂对工业固废除水效果及力学性能分析. 河南科技. 2023(06): 90-94 . 百度学术
    4. 孔啸,赵传文,孙健,郭亚飞,亓皓月,卢平. 电石渣直接湿法碳酸化固定CO_2的反应特性. 洁净煤技术. 2023(04): 129-136 . 百度学术
    5. 杨洋,熊亚选,任静,赵彦琦,李烁,田曦,丁玉龙. 碳捕捉对电石渣-钢渣复合相变储热材料性能的影响. 储能科学与技术. 2023(12): 3690-3698 . 百度学术
    6. 丁湛,邴慧,查广平,栗培龙,柳玉. 激发剂对电石渣稳定土强度的影响研究. 安全与环境学报. 2022(02): 972-980 . 百度学术
    7. 年琳玉,王梦军,孙笑阳,曹崇江. 碳中和技术研究进展及对农业碳减排的展望. 江苏农业科学. 2022(11): 1-13 . 百度学术
    8. 郎子轩,张亚朋,刘艳芳,崔龙鹏,赵明明,朱富霞. 响应面曲线法优化含盐污水协同电石渣矿化封存CO_2. 环境工程学报. 2022(10): 3478-3485 . 本站查看
    9. 伊元荣,张京辉,艾尼瓦尔·斯地克,白书齐,史星丽. pH对精炼渣碳酸化效果机制研究. 新疆大学学报(自然科学版)(中英文). 2022(05): 608-614+624 . 百度学术
    10. 栗培龙,毕嘉宇,裴仪,朱德健. 粉煤灰对电石渣稳定黄土的性能改善分析. 公路工程. 2022(06): 146-152 . 百度学术
    11. 马立强,翟江涛,NGO Ichhuy. CO_2矿化煤基固废制备保水开采负碳充填材料试验研究. 煤炭学报. 2022(12): 4228-4236 . 百度学术
    12. 时松,刘长武,吴海宽,陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究. 材料导报. 2021(07): 7027-7032 . 百度学术
    13. 张亚朋,崔龙鹏,刘艳芳,李红伟,王志强,郎子轩. 3种典型工业固废的CO_2矿化封存性能. 环境工程学报. 2021(07): 2344-2355 . 本站查看
    14. 武鸽,刘艳芳,崔龙鹏,李红伟,侯吉礼,王志强. 典型工业固体废物碳酸化反应性能的比较. 石油学报(石油加工). 2020(01): 169-178 . 百度学术
    15. 高朋,党增琦,栗培龙,沈明汉,曾宪军. 电石渣-粉煤灰稳定土强度影响因素分析. 路基工程. 2020(05): 6-10 . 百度学术
    16. 方明航,伊元荣,马文青,马忠乐,白书齐,蔺悦,杜昀聪. 温度对精炼渣碳酸化效果影响分析. 硅酸盐通报. 2020(12): 3905-3912 . 百度学术
    17. 任国宏,廖洪强,高宏宇,闫志华,程芳琴. 粉煤灰-电石渣制浆矿化的固碳增强特性. 材料导报. 2019(21): 3556-3560 . 百度学术

    其他类型引用(6)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.5 %DOWNLOAD: 8.5 %FULLTEXT: 60.8 %FULLTEXT: 60.8 %META: 30.7 %META: 30.7 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 90.3 %其他: 90.3 %Ashburn: 0.6 %Ashburn: 0.6 %Beijing: 1.1 %Beijing: 1.1 %Kaifeng: 0.3 %Kaifeng: 0.3 %Suzhou: 0.3 %Suzhou: 0.3 %XX: 4.0 %XX: 4.0 %临汾: 0.3 %临汾: 0.3 %俄克拉何马城: 0.3 %俄克拉何马城: 0.3 %北京: 0.6 %北京: 0.6 %抚州: 0.3 %抚州: 0.3 %济南: 0.3 %济南: 0.3 %深圳: 0.3 %深圳: 0.3 %西安: 0.3 %西安: 0.3 %郑州: 1.1 %郑州: 1.1 %其他AshburnBeijingKaifengSuzhouXX临汾俄克拉何马城北京抚州济南深圳西安郑州Highcharts.com
计量
  • 文章访问数:  5866
  • HTML全文浏览数:  5641
  • PDF下载数:  174
  • 施引文献:  23
出版历程
  • 刊出日期:  2018-08-17
任国宏, 廖洪强, 吴海滨, 高宏宇, 闫志华, 程芳琴. 粉煤灰、电石渣及其配合物碳酸化特性[J]. 环境工程学报, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119
引用本文: 任国宏, 廖洪强, 吴海滨, 高宏宇, 闫志华, 程芳琴. 粉煤灰、电石渣及其配合物碳酸化特性[J]. 环境工程学报, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119
REN Guohong, LIAO Hongqiang, WU Haibin, GAO Hongyu, YAN Zhihua, CHENG Fangqin. Carbonation characteristics of fly ash, carbide slag and their mixtures[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119
Citation: REN Guohong, LIAO Hongqiang, WU Haibin, GAO Hongyu, YAN Zhihua, CHENG Fangqin. Carbonation characteristics of fly ash, carbide slag and their mixtures[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2295-2300. doi: 10.12030/j.cjee.201803119

粉煤灰、电石渣及其配合物碳酸化特性

  • 1. 山西大学资源与环境工程研究所,太原 030006
  • 2. 长治市杨暴热电粉煤灰综合利用有限公司,长治 046000
  • 3. 山西瑞恩泽科技有限公司,太原030006
基金项目:

山西省重点研发计划重点项目(201603D312003)

摘要: 为了促进粉煤灰和电石渣建材化高效利用和协同矿化CO2减排,研究了粉煤灰、电石渣及其配合物的碳酸化特性。实验采用pH在线测试方法分别对粉煤灰、电石渣以及两者配合物的碳酸化过程的pH进行在线测试,并对原料和产物进行XRD、TGA和SEM表征。结果表明:相同条件下,粉煤灰碳酸化浆液pH降到7.0的平均速度约为电石渣的51倍;与等量电石渣单独碳酸化相比,粉煤灰与电石渣按照4:1(质量比)复配碳酸化pH降低到7.0的速度较纯电石渣提高了近5.6倍,且在相同电石渣配量的条件下,粉煤灰-电石渣复配料比碳酸钙-电石渣复配料的碳酸化反应完成时间缩短了31.6%,说明电石渣与粉煤灰复配后进行碳酸化反应具有明显协同促进作用。TGA分析表明,纯粉煤灰和纯电石渣的固碳率分别约为2%和61.3%,粉煤灰与电石渣复配料的固碳率较等量单一电石渣和粉煤灰的固碳率之和的计算值提高了19.6%。SEM分析表明,粉煤灰与电石渣复配料碳酸化产物碳酸钙颗粒在粉煤灰表面呈现异位分散附着形态,而单一电石渣碳酸化产物碳酸钙则在电石渣颗粒表面呈现原位聚集附着形态。这可能是复配料固碳率提高的主要原因。

English Abstract

参考文献 (8)

返回顶部

目录

/

返回文章
返回