新型二级逆流吸附工艺处理模拟含碘放射性废水

李晓媛, 顾平, 张晓媛, 国中馨, 张光辉, 董丽华. 新型二级逆流吸附工艺处理模拟含碘放射性废水[J]. 环境工程学报, 2018, 12(2): 468-474. doi: 10.12030/j.cjee.201708139
引用本文: 李晓媛, 顾平, 张晓媛, 国中馨, 张光辉, 董丽华. 新型二级逆流吸附工艺处理模拟含碘放射性废水[J]. 环境工程学报, 2018, 12(2): 468-474. doi: 10.12030/j.cjee.201708139
LI Xiaoyuan, GU Ping, ZHANG Xiaoyuan, GUO Zhongxin, ZHANG Guanghui, DONG Lihua. Treatment of iodide from simulated radioactive wastewater using novel countercurrent two-stage adsorption process[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 468-474. doi: 10.12030/j.cjee.201708139
Citation: LI Xiaoyuan, GU Ping, ZHANG Xiaoyuan, GUO Zhongxin, ZHANG Guanghui, DONG Lihua. Treatment of iodide from simulated radioactive wastewater using novel countercurrent two-stage adsorption process[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 468-474. doi: 10.12030/j.cjee.201708139

新型二级逆流吸附工艺处理模拟含碘放射性废水

  • 基金项目:

    国家自然科学基金资助项目(51238006)

Treatment of iodide from simulated radioactive wastewater using novel countercurrent two-stage adsorption process

  • Fund Project:
  • 摘要: 为解决除碘吸附剂吸附效率较低的问题,开发出排除吸附剂脱附干扰的新型二级逆流吸附工艺。采用烧杯实验考察吸附剂对自来水中I-的吸附特性,初始I-浓度为2.00 mg·L-1,90 min达到吸附平衡,且较好符合Langmuir吸附等温式。这种吸附剂吸附I-后会发生显著的脱附。基于吸附剂的特性和Langmuir吸附等温式,设计出新型二级逆流吸附工艺,并提出该工艺的计算模型,用于预测该工艺出水I-的浓度。结果表明,该工艺能有效提高模拟放射性废水中I-的去除效率,其出水I-的平均浓度为0.150 mg·L-1,去除率达到92.5%。计算出水I-浓度为0.124 mg·L-1,去除率为93.8%,实测值与模型计算值接近。与常规单级吸附工艺相比,在相同的吸附剂投加量下,I-去除率由78.0%提高至92.5%。
  • 加载中
  • [1] KULYUKHIN S A, KAMENSKAYA A N, KONOVALOVA N A.Chemistry of radioactive iodine in aqueous media: Basic and applied aspects[J].Radiochemistry,2011,3(2):123-141
    [2] 贾麟, 刘阳, 张光辉, 等.去除水体中放射性碘核素的研究进展[J].工业水处理,2015,5(7):10-13
    [3] RILEY B J, VIENNA J D, STRACHAN D M, et al.Materials and processes for the effective capture and immobilization of radioiodine: A review[J].Journal of Nuclear Materials,2016,0:307-326
    [4] OHTA T, MAHARA Y, KUBOTA T, et al.Prediction of groundwater contamination with 137Cs and 131I from the Fukushima nuclear accident in the Kanto district[J].Journal of Environmental Radioactivity,2012,1:38-41
    [5] LIU X, CHEN G R, LEE D J,et al.Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents[J].Bioresource Technology,2014,0(5):142-149
    [6] RAHMAN R, IBRAHIUM H, HUNG Y T.Liquid radioactive wastes treatment: A review[J].Water,2011,3(2):551-565
    [7] LIU Y, GU P, JIA L, et al.An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions[J].Journal of Hazardous Materials,2015,2:82-89
    [8] 杨云, 顾平, 刘阳, 等.沉淀-微滤组合工艺处理模拟含碘放射性废水[J].化工学报,2016,8(3):1211-1217
    [9] KUBOTA T, FUKUTANI S, OHTA T, et al.Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon[J].Journal of Radioanalytical and Nuclear Chemistry,2013,6(2):981-984
    [10] ZHANG X Y, GU P, LI X Y, et al.Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon[J].Chemical Engineering Journal,2017,2:129-139
    [11] ZHAO C, GU P, ZHANG G.A hybrid process of powdered activated carbon countercurrent two-stage adsorption and microfiltration for petrochemical RO concentrate treatment[J].Desalination,2013,0(12):9-15
    [12] HAN F, ZHANG G H, GU P.Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration[J].Journal of Hazardous Materials,2012,5-226(12):107-113
    [13] CAO J G, GU P, ZHAO J, et al.Removal of strontium from an aqueous solution using co-precipitation followed by microfiltration (CPMF)[J].Journal of Radioanalytical and Nuclear Chemistry,2010,5(3):539-546
    [14] ZHAO C, GU P, CUI H, et al.Reverse osmosis concentrate treatment via a PAC-MF accumulative countercurrent adsorption process[J].Water Research,2012,6(1):218-226
    [15] 中华人民共和国卫生部, 中国国家标准化管理委员会.生活饮用水标准检验方法:GB/T 5750-2006[S].北京: 中国标准出版社, 2006
    [16] GE P, WAN L J, XU Y J.Adorption and kinetics studies of baritite on Cr (Ⅵ) from aqueous solutions[J].Advanced Materials Research,2011,7-353:281-284
    [17] 梅特卡夫和埃迪公司,乔巴诺格劳斯,伯顿,等.废水工程处理及回用[M].北京:化学工业出版社,2004:825-826
    [18] 李圭白,张杰.水质工程学[M].北京:中国建筑工业出版社,2013:178-179
    [19] 中华人民共和国卫生部, 中国国家标准化管理委员会.生活饮用水卫生标准:GB/T 5749-2006[S].北京: 中国标准出版社, 2006
    [20] 世界卫生组织.饮用水水质准则[M].4版.上海:上海交通大学出版社,2011
  • 加载中
计量
  • 文章访问数:  2530
  • HTML全文浏览数:  2097
  • PDF下载数:  664
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08

新型二级逆流吸附工艺处理模拟含碘放射性废水

  • 1. 天津大学环境科学与工程学院,天津 300350
基金项目:

国家自然科学基金资助项目(51238006)

摘要: 为解决除碘吸附剂吸附效率较低的问题,开发出排除吸附剂脱附干扰的新型二级逆流吸附工艺。采用烧杯实验考察吸附剂对自来水中I-的吸附特性,初始I-浓度为2.00 mg·L-1,90 min达到吸附平衡,且较好符合Langmuir吸附等温式。这种吸附剂吸附I-后会发生显著的脱附。基于吸附剂的特性和Langmuir吸附等温式,设计出新型二级逆流吸附工艺,并提出该工艺的计算模型,用于预测该工艺出水I-的浓度。结果表明,该工艺能有效提高模拟放射性废水中I-的去除效率,其出水I-的平均浓度为0.150 mg·L-1,去除率达到92.5%。计算出水I-浓度为0.124 mg·L-1,去除率为93.8%,实测值与模型计算值接近。与常规单级吸附工艺相比,在相同的吸附剂投加量下,I-去除率由78.0%提高至92.5%。

English Abstract

参考文献 (20)

目录

/

返回文章
返回