石墨相氮化碳的制备及光催化降解罗丹明B

党聪哲, 李一兵, 赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043
引用本文: 党聪哲, 李一兵, 赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043
DANG Congzhe, LI Yibing, ZHAO Xu. Preparation of graphite carbon nitride for photocatalytic degradation of RhB[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043
Citation: DANG Congzhe, LI Yibing, ZHAO Xu. Preparation of graphite carbon nitride for photocatalytic degradation of RhB[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043

石墨相氮化碳的制备及光催化降解罗丹明B

  • 基金项目:

    国家自然科学基金优秀青年基金资助项目(51222802)

Preparation of graphite carbon nitride for photocatalytic degradation of RhB

  • Fund Project:
  • 摘要: 研究了不同前驱体组合对制备光催化剂的影响,通过X-射线衍射分析、红外光谱分析、氮气吸附-脱附等温曲线、光学性质分析和紫外-可见漫反射等方法,对光催化剂性质进行表征。结果表明:以质量比为1∶1的C2H4N4/CON2H4组合前驱体制备的光催化剂表现出结晶度好、光生载流子分离效率高、催化剂性能稳定等特点;C2H4N4/CON2H4组合前驱体制备的g-C3N4光催化反应180 min后对RhB的去除率最高;通过添加异丙醇、苯醌和EDTA对光催化过程中产生的活性物质进行分析发现,超氧自由基和空穴是降解RhB的主要活性物质。
  • 加载中
  • [1] TOORU I, AKIRA F, SATOSHI K, et al.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J].Nature,1972,7:637-638
    [2] XU D F, HAI Y, ZHANG X C, et al.Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2[J].Applied Surface Science,2017,0:530-536
    [3] WANG X J, SONG J K, HUANG J Y, et al.Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation[J].Applied Surface Science,2016,0:190-201
    [4] GEORGE R, BAHADUR N, SINGH N, et al.Environmentally benign TiO2 nanomaterials for removal of heavy metal ions with interfering ions present in tap[J].Materials Today Proceedings,2016,3(2):162-166
    [5] PICHAT P, DISDIER J, HOANG-VAN C, et al.Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis[J].Catalysis Today,2000,3(2/3/4):363-369
    [6] ZHANG L, GAO Q, HAN Y.Zn and Ag Co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation[J].Journal of Materials Science & Technology,2016,2(9):919-924
    [7] SAMOKHVALOV A.Hydrogen by photocatalysis with nitrogen codoped titanium dioxide[J].Renewable and Sustainable Energy Reviews,2017,2:981-1000
    [8] CHOW K L, MAN Y B, TAM N F Y, et al.Removal of decabromodiphenyl ether (BDE-209) using a combined system involving TiO2 photocatalysis and wetland plants[J].Journal of Hazardous Materials,2017,2:263-269
    [9] CHENG G, XU F F, XIONG J Y, et al.A novel protocol to design TiO2-Fe2O3 hybrids with effective charge separation efficiency for improved photocatalysis[J].Advanced Powder Technology,2017,8(2):665-670
    [10] LIU H H, CHEN D L, WANG Z Q, et al.Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance[J].Applied Catalysis B: Environmental,2017,3:300-313
    [11] MIAO J L, XU G Q, LIU J Q, et al.Synthesis and photocatalytic performance of g-C3N4 nanosheets via liquid phase stripping[J].Journal of Solid State Chemistry,2017,6:186-193
    [12] ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al.Preparation of sphere-shaped nanoscale carbon nitride polymer[J].Russian Chemical Bulletin,2001,0(11):2020-2027
    [13] ZHANG J, CHEN X, TAKANABE K, et al.Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J].Angewandte Chemie,2010,9(2):441-444
    [14] GU Y, CHEN L, SHI L, et al.Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide[J].Carbon,2003,1(13):2674-2676
    [15] ZHU Z, TANG X, MA C C, et al.Fabrication of conductive and high-dispersed Ppy@Ag/g-C3N4 composite photocatalysts for removing various pollutants in water[J].Applied Surface Science,2016,7:366-374
    [16] YUAN X Y, LI W Y.Graphitic-C3N4 modified ZnAl-layered double hydroxides for enhanced photocatalytic removal of organic dye[J].Applied Clay Science,2017,8:107-113
    [17] LIU Q, CHEN T X, GUO Y R.Grafting Fe(Ⅲ) species on carbon nanodots/Fe-doped g-C3N4 via interfacial charge transfer effect for highly improved photocatalytic performance[J].Applied Catalysis B: Environmental,2017,5:173-181
    [18] LIU L, MA D, ZHENG H, et al.Synthesis and characterization of microporous carbon nitride[J].Microporous and Mesoporous Materials,2008,0(2):216-222
    [19] XING W N, LI C M, CHEN G, et al.Incorporating a novel metal-free interlayer into g-C3N4 framework for efficiency enhanced photocatalytic H2 evolution activity[J].Applied Catalysis B: Environmental,2017,3:65-71
    [20] YANG H, LV K L, ZhU J J, et al.Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4[J].Applied Surface Science,2017,1:333-340
    [21] ZHANG Y, GONG H H, LI G X, et al.Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light[J].International Journal of Hydrogen Energy,2017,2(1):143-151
    [22] YANG X L, QIAN F F, ZOU G J, et al.Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J].Applied Catalysis B: Environmental,2016,3:22-35
    [23] HU W D, YU J X, JIANG X L, Enhanced photocatalytic activity of g-C3N4 via modification of NiMoO4 nanorods[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,4:98-106
    [24] SENTHIL R A, THEERTHAGIRI J, SELVI A, et al.Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation[J].Optical Materials,2017,4:533-539
    [25] LONGBO J, XING Z Y, YANG P, et al.Doping of graphitic carbon nitride for photocatalysis:A review[J].Applied Catalysis B:Environmental,2017,7:388-406
    [26] LIU Y, YUAN X Z, WANG H, et al.Solvothermal synthesis of graphene/BiOC l0.75Br0.25 microspheres with excellent visible-light photocatalytic activity[J].RSC Advances,2015,5(42):33696-33704
    [27] ZHANG Y L, XIE C R, GU F L, et al.Significant visible-light photocatalytic enhancement in rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly(3-hexylthiophene)[J].Journal of Hazardous Materials,2016,5:23-34
  • 加载中
计量
  • 文章访问数:  3578
  • HTML全文浏览数:  3085
  • PDF下载数:  643
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08
党聪哲, 李一兵, 赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043
引用本文: 党聪哲, 李一兵, 赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043
DANG Congzhe, LI Yibing, ZHAO Xu. Preparation of graphite carbon nitride for photocatalytic degradation of RhB[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043
Citation: DANG Congzhe, LI Yibing, ZHAO Xu. Preparation of graphite carbon nitride for photocatalytic degradation of RhB[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 427-433. doi: 10.12030/j.cjee.201708043

石墨相氮化碳的制备及光催化降解罗丹明B

  • 1. 河北工业大学土木与交通学院,天津 300401
  • 2. 中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085
基金项目:

国家自然科学基金优秀青年基金资助项目(51222802)

摘要: 研究了不同前驱体组合对制备光催化剂的影响,通过X-射线衍射分析、红外光谱分析、氮气吸附-脱附等温曲线、光学性质分析和紫外-可见漫反射等方法,对光催化剂性质进行表征。结果表明:以质量比为1∶1的C2H4N4/CON2H4组合前驱体制备的光催化剂表现出结晶度好、光生载流子分离效率高、催化剂性能稳定等特点;C2H4N4/CON2H4组合前驱体制备的g-C3N4光催化反应180 min后对RhB的去除率最高;通过添加异丙醇、苯醌和EDTA对光催化过程中产生的活性物质进行分析发现,超氧自由基和空穴是降解RhB的主要活性物质。

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回