集成催化燃烧和氨水吸收制冷的油气冷凝吸附回收系统
Oil vapor recovery system with integrated condensation, adsorption, catalytic combustion and ammonia absorption refrigeration
-
摘要: 为回收并资源化利用挥发油气,建立了一种集成冷凝、吸附、催化燃烧和氨水吸收制冷技术的油气回收系统。为分析该系统回收油气时的回收率和能耗,结合油气混合物及其组 分浓度数据,对采用该系统回收油气的方案进行建模和计算。利用Aspen Plus软件模拟3级冷凝过程,改变2级冷凝温度,得到相应的能耗、未被冷凝的油气量和组分浓度;利用Aspen Plus软件模拟单级氨水吸收式制冷过程,得到相应的制冷系数和能耗;估算催化燃烧子系统所需的油气量;对于吸附子系统,只考虑吸附过程,进入吸附装置的油气全部得到回收。通过计算求得油气的回收率和系统的能耗。结果表明:采用该工艺系统回收油气时,回收率和能耗均随二级冷凝温度的升高而降低;相较于传统的“冷凝加吸附法”工艺,该工艺系统的能耗降低30%左右,回收率仅降低2%左右。Abstract: An oil vapor recovery system integrating technologies of condensation, adsorption, catalytic combustion and absorption refrigeration is built and performance is theoretically analyzed in this paper. Absorption refrigeration is used to undertake partially the cooling demand in condensation and driven by consuming little amount of oil vapor in catalytic combustion. Simulation is conducted with Aspen Plus, concerning recovery rate and energy consumption in recovery of four oil vapor samples with different component and concentration. In condensation module, triple-stage condensation is considered with variation of condensation temperature in the second stage. In absorption refrigeration module, ammonia-water working pair is adopted in single-stage system. In adsorption module, only adsorption process is involved to simulate oil vapor recovery. It is concluded that both oil recovery rate and energy consumption decreases with condensation temperature in the second stage. Comparing with those in regular system integrating condensation with adsorption, energy consumption is reduced by 30% in the system proposed in this paper, with only 2% decrement of oil recovery rate. Therefore, the oil vapor recovery system integrating technologies of condensation, adsorption, catalytic combustion and absorption refrigeration is valid and energy-efficient.
-
Key words:
- oil vapor recovery /
- energy consumption /
- condensation /
- absorption refrigeration /
- adsorption /
- catalytic combustion
-
[1] 黄维秋.油气回收基础理论及其应用[M].北京: 中国石化出版社, 2011:6-11 [2] URIBE-HERNANDEZ R, OCA-GARCIA M A M D, LIS Z E, et al.Environmental and health risk assessment of an oil contaminated site in the Mexican tropical southeast[J].International Journal of Oil Gas & Coal Technology,2010,3(3):19-38 [3] 邹宏梅.油气回收技术在加油站中的应用[J].安全与环境工程, 2004(3):18-20 [4] 中华人民共和国环境保护部, 中华人民共和国国家质量监督检验检疫总局.石油化学工业污染物排放标准: GB 31571-2015[S].北京: 中国环境科学出版社, 2015 [5] 谢红岩.吸收法油气回收过程汽液平衡数据测定与工艺优化[D].天津: 天津大学, 2009 [6] 郝保良.实施油气回收的必要性和技术方案的探讨[J].石油化工管理干部学院学报,2002(2):41-42 [7] 黄维秋, 王丹莉, 李峰,等.油气回收技术的研究进展与研究重点[J].油气储运,2012,1(9):641-646 [8] 黄维秋, 石莉, 胡志伦,等.冷凝和吸附集成技术回收有机废气[J].化学工程,2012,0(6):13-17 [9] 彭国庆.冷凝法回收油气问题的探讨[J].石油化工环境保护, 1999(2):32-35 [10] 黄维秋, 吕爱华,钟璟.活性炭吸附回收高含量油气的研究[J].环境工程学报, 2007,1(2):73-77 [11] ROMERO-ANAYA A J, LILLO-RDENAS M A, LINARES-SOLANO A.Spherical activated carbons for low concentration toluene adsorption[J].Carbon,2010,8(9):2625-2633 [12] MAFI M, NAEYNIAN M M S, AMIDPOUR M.Exergy analysis of multistage cascade low temperature refrigeration systems used in olefin plants[J].International Journal of Refrigeration,2009,2(2):279-294 [13] GUEDES B, FEITOSA M, VASCONCELOS L, et al.Sensitivity and dynamic behavior analysis of an industrial azeotropic distillation column[J].Separation and Purification Technology,2007,6(3):270-277 [14] 杨思文.氨水吸收式制冷机的基础理论和设计之七:性能与流程[J].流体工程, 1990(3):56-63 [15] 孙道青, 张述伟, 刘健.工业双级氨水吸收制冷系统的模拟与优化[J].化工进展, 2008,7(4):625-630
计量
- 文章访问数: 3285
- HTML全文浏览数: 2844
- PDF下载数: 722
- 施引文献: 0