粉尘颗粒亲水性对其雾化离心去除率的影响

辛儒斌, 张宇萌, 李思庆, 姜云超, 董科军, 王博. 粉尘颗粒亲水性对其雾化离心去除率的影响[J]. 环境工程学报, 2018, 12(8): 2270-2280. doi: 10.12030/j.cjee.201801180
引用本文: 辛儒斌, 张宇萌, 李思庆, 姜云超, 董科军, 王博. 粉尘颗粒亲水性对其雾化离心去除率的影响[J]. 环境工程学报, 2018, 12(8): 2270-2280. doi: 10.12030/j.cjee.201801180
XIN Rubin, ZHANG Yumeng, LI Siqing, JIANG Yunchao, DONG Kejun, WANG Bo. Effect of hydrophilicity of dust particles on their removal efficiency in a gas cyclone with atomized water vapor[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2270-2280. doi: 10.12030/j.cjee.201801180
Citation: XIN Rubin, ZHANG Yumeng, LI Siqing, JIANG Yunchao, DONG Kejun, WANG Bo. Effect of hydrophilicity of dust particles on their removal efficiency in a gas cyclone with atomized water vapor[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2270-2280. doi: 10.12030/j.cjee.201801180

粉尘颗粒亲水性对其雾化离心去除率的影响

  • 基金项目:

    国家自然科学基金青年科学基金资助项目(51708268)

    中央高校基本科研业务费项目(2017-K28)

Effect of hydrophilicity of dust particles on their removal efficiency in a gas cyclone with atomized water vapor

  • Fund Project:
  • 摘要: 基于电声换能超声波雾化-旋风除尘器联用技术,研究了亲水性对粉尘颗粒去除率的影响。通过选择若干种亲水性不同的常见工业粉尘,在相同实验条件下研究其亲水性与离心去除率之间的关系。结果表明,在旋风分离前加入雾气,亲水性较好的粉尘颗粒去除率有明显的提升,在通入浓度为4 g·m-3的雾气后,滑石粉颗粒的去除率从无雾气时的76.9%提高到90.1%,增长幅度为13.2%,而亲水性较差的S-zorb脱硫催化剂去除率从72.1%增加到80.1%,增幅仅为8.0%。这一现象尤其体现在粒径在2.5 μm附近的细颗粒物上,滑石粉去除率增幅最高点出现在粒径为2 μm的颗粒处,从无雾气时的31.5%增长到有雾气时的72.8%,增幅为41.3%,而亲水性较差的S-zorb脱硫催化剂去除率最高增幅只有17.7%,从无雾气时的43.9%增长到有雾气时的61.6%,去除率增幅最高点出现在粒径为2.3 μm的颗粒处。实验前后粉尘颗粒形态的SEM扫描电子显微镜图像也证实亲水性对颗粒物团聚、长大有重要影响。研究亲水性对粉尘颗粒去除率的影响,可进一步优化、改进电声换能超声波雾化-旋风除尘器联用除尘技术,使其发挥更大的工业应用潜力,减少PM2.5排放。
  • 加载中
  • [1] 颜金培, 杨林军, 凡凤仙, 等.基于分形理论的水汽在燃煤细颗粒表面异质核化数值研究[J]. 中国电机工程学报,2009,29 (11):50-56
    [2] 王玮, 汤大钢, 刘红杰, 等. 中国PM2.5污染状况和污染特征的研究[J]. 环境科学学报,2000,13(1):1-5
    [3] SLOSS L L, SMITH I M.PM10 and PM2.5:An international perspective[J].Fuel Processing Technology,2000, 65–66(99):127-141
    [4] 颜金培, 杨林军, 沈湘林.燃烧源PM2.5微粒润湿性能[J]. 东南大学学报(自然科学版),2006,36(5):760-764
    [5] GAO J, WANG T, ZHOU X, et al.Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions[J].Atmospheric Environment,2008,43(4):829-836 10.1016/j.atmosenv.2008.10.046
    [6] 岳勇, 陈雷, 姚强, 等.燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究[J]. 中国电机工程学报,2005,25(18):74-79
    [7] 赵永椿, 张军营, 魏凤, 等.燃煤超细颗粒物团聚促进机制的实验研究[J]. 化工学报,2007,58(11):2876-2881
    [8] 颜金培, 杨林军, 张霞, 等.应用蒸汽相变机理脱除燃煤可吸入颗粒物实验研究[J]. 中国电机工程学报,2007,27(35): 12-16
    [9] 徐鸿, 骆仲泱, 王鹏, 等.燃煤细微颗粒声波团聚的机理研究[J]. 工程热物理学报,2008,29(11):1965-1968
    [10] 颜金培, 陈立奇, 杨林军.润湿剂促进燃煤细颗粒声波团聚脱除的实验研究[J]. 燃料化学学报,2014,42(10):1259-1265
    [11] 徐俊超, 张军, 周璐璐, 等.蒸汽凝结促进PM2.5长大的研究现状[J]. 现代化工,2014,34(3):20-24
    [12] FISENKO S P, WANG W N, SHIMADA M, et al.Vapor condensation on nanoparticles in the mixer of a particle size magnifier[J].International Journal of Heat & Mass Transfer,2007,50(11):2333-2338 10.1016/j.ijheatmasstransfer.2006.10.046
    [13] 徐俊超, 于燕, 张军, 等.液滴在燃煤细颗粒表面凝结的长大动力学特性[J]. 东南大学学报(自然科学版),2017,47(3):506-512 10.3969/j.issn.1001-0505.2017.03.016
    [14] JI J H, HWANG J, BAE G N, et al.Particle charging and agglomeration in DC and AC electric fields[J].Journal of Electrostatics,2004,61(1):57-68 10.1016/j.elstat.2003.12.003
    [15] 魏凤, 张军营, 王春梅, 等. 煤燃烧超细颗粒物团聚促进技术的研究进展[J]. 煤炭转化,2003,26(3):27-31
    [16] SCHAUER P J.Removal of submicron aerosol particles from moving gas stream[J].Industrial & Engineering Chemistry,1951,43(7):1532–1538
    [17] SEYMOURCALVERT, JHAVERI N.Flux force/condensation Scrubbing[J].Air Repair,1974,24(10):946-951 10.1080/00022470.1974.10469994
    [18] KRYUKOV A P, LEVASHOV V Y, SHISHKOVA I N.Vapor flow with evaporation–condensation on solid particles[J].Journal of Applied Mechanics & Technical Physics,2004,45(3):407-414 10.1023/B:JAMT.0000025023.23436.60
    [19] 凡凤仙, 杨林军, 袁竹林. 蒸汽在细微颗粒表面异质核化研究进展[J]. 化工进展,2009,28(9):1496-1500
    [20] 凡凤仙, 杨林军, 袁竹林, 等. 水汽在燃煤PM2.5表面异质核化特性数值预测[J]. 化工学报,2007,58(10):2561-2566
    [21] 颜金培, 陈立奇, 杨林军, 等. 声波与相变联合作用下细颗粒脱除的实验研究[J]. 中国电机工程学报,2014,34(20):3282-3288
    [22] YOSHIDA T, KOUSAKA Y, OKUYAMA K, et al.Application of particle enlargement by condensation to industrial dust collection[J].Journal of Chemical Engineering of Japan,2006,11(6):469-475 10.1252/jcej.11.469
    [23] 陈涛, 王晓彧, 章德, 等. 压电换能式超声波雾化喷嘴的研究进展[C]//中国声学学会. 2010中国西部地区声学学术交流会论文集. 腾冲,2010:449-452
    [24] 黄晖, 姚熹, 汪敏强, 等. 超声雾化系统的雾化性能测试[J]. 压电与声光,2004,26(1):62-64
    [25] KIRPALANI D M, SUZUKI K.Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization[J].Ultrasonics Sonochemistry,2011,18(5):1012 10.1016/j.ultsonch.2010.05.013
    [26] 王光旭, 徐国栋, 刘文婧, 等. 应用电声换能超声波雾化方法提高超细颗粒捕集效率[J]. 环境工程学报,2013,7(1):294-300
    [27] CHEN Y Y, LEE W M G.Hygroscopic properties of inorganic-salt aerosol with surface-active organic compounds[J].Chemosphere,1999,38(10):2431-2448 10.1016/S0045-6535(98)00436-6
    [28] WEINGARTNER E, BURTSCHER H, BALTENSPERGER U.Hygroscopic properties of carbon and diesel soot particles[J].Atmospheric Environment,1997,31(15):2311-2327 10.1016/S1352-2310(97)00023-X
    [29] KERMINEN V M.The effects of particle chemical character and atmospheric processes on particle hygroscopic properties[J].Journal of Aerosol Science,1997,28(1):121-132 10.1016/S0021-8502(96)00069-9
    [30] RAY M B, HOFFMANN A C, POSTMA R S.Performance of different analytical methods in evaluating grade efficiency of centrifugal separators[J].Journal of Aerosol Science,2000,31(5):563-581 10.1016/S0021-8502(99)00543-1
    [31] 尹云波, 常坦祥, 孙宏敏. 旋风除尘器除尘效率的影响因素探讨[J]. 安徽建筑大学学报,2014,22(5):46-49
    [32] CH LEK P, VIDEEN G, NGO D, et al.Effect of black carbon on the optical properties and climate forcing of sulfate aerosols[J].Journal of Geophysical Research Atmospheres,1995,100(D8):16325-16332 10.1029/95JD01465
    [33] 颜金培, 杨林军, 张霞, 等. 润湿剂促进燃油细颗粒捕集的实验研究[J]. 化工学报,2008,59(10):2616-2621
    [34] HEMATI M, CHERIF R, SALEH K, et al.Fluidized bed coating and granulation: Influence of process-related variables and physicochemical properties on the growth kinetics[J].Powder Technology,2003,130(1):18-34 10.1016/S0032-5910(02)00221-8
    [35] MAJUMDER A K, YERRISWAMY P, BARNWAL J P.The “fish-hook” phenomenon in centrifugal separation of fine particles[J].Minerals Engineering,2003,16(10):1005-1007 10.1016/j.mineng.2003.07.001
    [36] AL P E.Atmospheric Chemistry and Physics[M].America:Atmospheric Chemistry and Physics of Air Pollution,Wiley,1986:1595-1595
    [37] KIM D S, PARK S H, SONG Y M, et al.Brownian coagulation of polydisperse aerosols in the transition regime[J].Journal of Aerosol Science,2003,34(7):859-868 10.1016/S0021-8502(03)00055-7
  • 加载中
计量
  • 文章访问数:  3419
  • HTML全文浏览数:  3145
  • PDF下载数:  166
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17

粉尘颗粒亲水性对其雾化离心去除率的影响

  • 1. 兰州大学资源环境学院,西部环境教育部重点实验室,甘肃省细颗粒物污染控制技术与装备工程研究中心,兰州730000
  • 2. 西悉尼大学基础设施工程中心,新南威尔士州2751
基金项目:

国家自然科学基金青年科学基金资助项目(51708268)

中央高校基本科研业务费项目(2017-K28)

摘要: 基于电声换能超声波雾化-旋风除尘器联用技术,研究了亲水性对粉尘颗粒去除率的影响。通过选择若干种亲水性不同的常见工业粉尘,在相同实验条件下研究其亲水性与离心去除率之间的关系。结果表明,在旋风分离前加入雾气,亲水性较好的粉尘颗粒去除率有明显的提升,在通入浓度为4 g·m-3的雾气后,滑石粉颗粒的去除率从无雾气时的76.9%提高到90.1%,增长幅度为13.2%,而亲水性较差的S-zorb脱硫催化剂去除率从72.1%增加到80.1%,增幅仅为8.0%。这一现象尤其体现在粒径在2.5 μm附近的细颗粒物上,滑石粉去除率增幅最高点出现在粒径为2 μm的颗粒处,从无雾气时的31.5%增长到有雾气时的72.8%,增幅为41.3%,而亲水性较差的S-zorb脱硫催化剂去除率最高增幅只有17.7%,从无雾气时的43.9%增长到有雾气时的61.6%,去除率增幅最高点出现在粒径为2.3 μm的颗粒处。实验前后粉尘颗粒形态的SEM扫描电子显微镜图像也证实亲水性对颗粒物团聚、长大有重要影响。研究亲水性对粉尘颗粒去除率的影响,可进一步优化、改进电声换能超声波雾化-旋风除尘器联用除尘技术,使其发挥更大的工业应用潜力,减少PM2.5排放。

English Abstract

参考文献 (37)

目录

/

返回文章
返回