燃煤飞灰负载钾基CO2吸收剂再生反应特性的动力学分析
Regeneration kinetics analysis of potassium-based sorbents loaded with coal ash for CO2 capture
-
摘要: 采用热重分析的方法对吸收剂的再生反应进行研究,说明了燃煤飞灰负载钾基CO2吸收剂的制备方法,探讨了在不同升温速率下燃煤飞灰负载钾基CO2吸收剂和纯KHCO3的再生反应特性。结果表明: 燃煤飞灰负载吸收剂的峰值失重速率为0.13~0.73 mg?min-1,在升温速率为20 ℃?min-1时,反应温度区间最小,为94.34 ℃;采用多种分析方法对吸收剂的受热分解反应进行动力学分析,纯KHCO3的反应活化能为85.7~92.0 kJ·mol-1;燃煤飞灰负载钾基CO2吸收剂的反应活化能为66.2~69.4 kJ·mol-1,随着转化率上升,2种样品的活化能均先减小后增大。燃煤飞灰负载钾基吸收剂再生反应的活化能小于纯KHCO3的活化能,说明将KHCO3负载于燃煤飞灰上有利于再生反应的进行。Abstract: The regeneration reaction of sorbent was studied by thermogravimetric analysis. The preparation method of potassium-based sorbent loaded with coal ash was briefly described. The regeneration reaction characteristics of the sorbent and pure KHCO3 at different heating rates were discussed. Results showed that peak weight loss rate of the sorbent was from 0.13 to 0.73 mg?min-1, and the minimum reaction temperature range was 94.34 ℃ at the heating rate of 20 ℃?min-1. The thermal decomposition of the sorbent was analyzed. The kinetic analysis results showed that the activation energy of pure KHCO3 was from 85.7 to 92.0 kJ·mol-1, the sorbent was from 66.2 to 69.4 kJ·mol-1, the activation energies of both pure KHCO3 and the sorbent were decreasing first and then increasing with the conversion rate increasing. The activation energy of potassium-based sorbent was less than that of pure KHCO3, indicating that KHCO3 loading on coal ash was beneficial for regeneration reaction.
-
Key words:
- coal ash /
- pure KHCO3 /
- CO2 /
- thermogravimetric analysis /
- regeneration /
- activation energy
-
[1] ZHAO C, GUO Y, LI W, et al.Experimental and modeling investigation on CO2 sorption kinetics over K2CO3-modified silica aerogels[J].Chemical Engineering Journal, 2017, 312:50-58 10.1016/j.cej.2016.11.121 [2] 王立威. 基于非等温动力学的负载型KHCO3/燃煤飞灰吸收剂CO2再生特性研究[D]. 上海: 东华大学,2013 [3] NELSON T O, COLEMAN L J I, GREEN D A, et al.The dry carbonate process: Carbon dioxide recovery from power plant flue gas[J].Energy Procedia, 2009, 1(1):1305-1311 10.1016/j.egypro.2009.01.171 [4] BONAVENTURA D, CHACARTEGUI R, VALVERDE J M, et al.Carbon capture and utilization for sodium bicarbonate production assisted by solar thermal power[J].Energy Conversion & Management, 2017, 149:860-874 10.1016/j.enconman.2017.03.042 [5] 王立威,刁永发,王琳琳,等. 基于非等温动力学的河道底泥负载钾基CO2吸收剂再生反应特性分析[J]. 东华大学学报(自然科学版), 2013, 39(5):662-667 [6] 赵传文,陈晓平,赵长遂. 碱金属基吸收剂干法脱除CO2技术的研究进展[J]. 动力工程,2008,28(6):827-833 [7] LEE S C, KIM J C.Dry potassium-based sorbents for CO2 capture [J].Catalysis Surveys from Asia, 2007, 11:171-185 10.1007/s10563-007-9035-z [8] 赵传文,陈晓平,赵长遂. 钾基CO2吸收剂再生反应特性[J]. 工程热物理学报,2009,30(12):2145-2148 [9] 董伟,陈晓平,吴烨.TiO2掺杂对Na2CO3/Al2O3吸收剂CO2捕捉性能的影响[J]. 化工学报,2014,65(9):3617-3625 [10] DONG W, CHEN X P, YU F.CO2 capture using dry TiO2-doped Na2CO3/Al2O3 sorbents in a fluidized-bed reactor[J].Journal of Southeast University(English Edition), 2015, 31(2):220-225 10.3969/j.issn.1003-7985.2015.02.011 [11] 邰晓燕. 底泥负载K+基CO2吸收剂的制备及其再生动力学特性研究[D]. 上海: 东华大学,2011 [12] 胡荣祖,高胜利,赵凤来. 热分析动力学[M]. 北京:科学出版社,2001
计量
- 文章访问数: 2659
- HTML全文浏览数: 2429
- PDF下载数: 136
- 施引文献: 0